Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
The emerging role of T cell Ig mucin 1 in alloimmune responses in an experimental mouse transplant model
Takuya Ueno, … , Nader Najafian, Mohamed H. Sayegh
Takuya Ueno, … , Nader Najafian, Mohamed H. Sayegh
Published January 2, 2008
Citation Information: J Clin Invest. 2008;118(2):742-751. https://doi.org/10.1172/JCI32451.
View: Text | PDF
Research Article

The emerging role of T cell Ig mucin 1 in alloimmune responses in an experimental mouse transplant model

  • Text
  • PDF
Abstract

T cell Ig mucin 1 (TIM-1) plays an important role in regulating immune responses in autoimmune and asthma models, and it is expressed on both Th1 and Th2 cells. Using an antagonistic TIM-1–specific antibody, we studied the role of TIM-1 in alloimmunity. A short course of TIM-1–specific antibody monotherapy prolonged survival of fully MHC-mismatched vascularized mouse cardiac allografts. This prolongation was associated with inhibition of alloreactive Th1 responses and preservation of Th2 responses. TIM-1–specific antibody treatment was more effective in Th1-type cytokine–deficient Stat4–/– recipients as compared with Th2-type cytokine–deficient Stat6–/– recipients. Subtherapeutic doses of rapamycin plus TIM-1–specific antibody resulted in allograft acceptance and prevented the development of chronic allograft vasculopathy. Allograft survival via this treatment was accompanied by a Th1- to Th2-type cytokine switch. Depletion of natural Tregs abrogated the graft-protecting effect of the TIM-1–specific antibody. Importantly, CD4+CD25+ Tregs obtained from long-term survivors had enhanced regulatory activity as compared with naive CD4+CD25+ Tregs. Consistent with this, TIM-1–specific antibody treatment both preserved Tregs and prevented the expansion of alloreactive effector Th1 cells in an alloreactive TCR transgenic adoptive transfer model. These studies define previously unknown functions of TIM-1 in regulating alloimmune responses in vivo and may provide a novel approach to promoting transplantation tolerance.

Authors

Takuya Ueno, Antje Habicht, Michael R. Clarkson, Monica J. Albin, Kazuhiro Yamaura, Olaf Boenisch, Joyce Popoola, Ying Wang, Hideo Yagita, Hisaya Akiba, M. Javeed Ansari, Jaeseok Yang, Laurence A. Turka, David M. Rothstein, Robert F. Padera, Nader Najafian, Mohamed H. Sayegh

×

Full Text PDF | Download (855.40 KB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts