Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Enhanced priming of adaptive immunity by a proapoptotic mutant of Mycobacterium tuberculosis
Joseph Hinchey, … , William R. Jacobs Jr., Steven A. Porcelli
Joseph Hinchey, … , William R. Jacobs Jr., Steven A. Porcelli
Published August 1, 2007
Citation Information: J Clin Invest. 2007;117(8):2279-2288. https://doi.org/10.1172/JCI31947.
View: Text | PDF
Research Article

Enhanced priming of adaptive immunity by a proapoptotic mutant of Mycobacterium tuberculosis

  • Text
  • PDF
Abstract

The inhibition of apoptosis of infected host cells is a well-known but poorly understood function of pathogenic mycobacteria. We show that inactivation of the secA2 gene in Mycobacterium tuberculosis, which encodes a component of a virulence-associated protein secretion system, enhanced the apoptosis of infected macrophages by diminishing secretion of mycobacterial superoxide dismutase. Deletion of secA2 markedly increased priming of antigen-specific CD8+ T cells in vivo, and vaccination of mice and guinea pigs with a secA2 mutant significantly increased resistance to M. tuberculosis challenge compared with standard M. bovis bacille Calmette-Guérin vaccination. Our results define a mechanism for a key immune evasion strategy of M. tuberculosis and provide what we believe to be a novel approach for improving mycobacterial vaccines.

Authors

Joseph Hinchey, Sunhee Lee, Bo Y. Jeon, Randall J. Basaraba, Manjunatha M. Venkataswamy, Bing Chen, John Chan, Miriam Braunstein, Ian M. Orme, Steven C. Derrick, Sheldon L. Morris, William R. Jacobs Jr., Steven A. Porcelli

×

Figure 4

Protective immunity against virulent M. tuberculosis challenge in mice following vaccination with ΔsecA2.

Options: View larger image (or click on image) Download as PowerPoint
Protective immunity against virulent M. tuberculosis challenge in mice f...
(A) C57BL/6 mice were vaccinated subcutaneously with saline (naive) or with 1 × 106 BCG or ΔsecA2 and challenged by aerosol 2 months later with 50–100 CFU of virulent M. tuberculosis Beijing/W strain (HN878). Graphs show means and SDs of CFU of M. tuberculosis in lung and spleen at 1, 3, and 5 months after challenge for groups of 5 mice that were either naive (white bars), BCG vaccinated (gray bars), or ΔsecA2 vaccinated (black bars). *P < 0.05 and †P < 0.001, compared with unvaccinated group or between bracketed groups; 1-way ANOVA with Tukey’s post-hoc test. (B) Lungs of mice vaccinated and challenged with virulent M. tuberculosis as in A were examined histologically at 1 and 3 months after challenge. More severe, spreading lung lesions with extensive granulomatous pneumonia and consolidation were observed in unvaccinated mice as compared with mice vaccinated with either BCG or ΔsecA2. Original magnification, ×20. (C) C57BL/6 mice were vaccinated subcutaneously with saline or with 1 × 106 BCG or ΔsecA2 and challenged by aerosol 2 months later with 50–100 CFU of virulent M. tuberculosis Erdman strain. Mice were observed daily for survival for 1 year after challenge. Moderate extension of survival was observed in BCG-vaccinated animals (P = 0.006 compared with naive control group; log rank test), and much more pronounced extension of survival was observed in ΔsecA2-vaccinated animals (P = 0.0001 compared with naive; P = 0.0062 compared with BCG).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts