Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
SLAT regulates Th1 and Th2 inflammatory responses by controlling Ca2+/NFAT signaling
Stéphane Bécart, … , Michael Croft, Amnon Altman
Stéphane Bécart, … , Michael Croft, Amnon Altman
Published August 1, 2007
Citation Information: J Clin Invest. 2007;117(8):2164-2175. https://doi.org/10.1172/JCI31640.
View: Text | PDF
Research Article Immunology

SLAT regulates Th1 and Th2 inflammatory responses by controlling Ca2+/NFAT signaling

  • Text
  • PDF
Abstract

SWAP-70–like adapter of T cells (SLAT) is a novel guanine nucleotide exchange factor for Rho GTPases that is upregulated in Th2 cells, but whose physiological function is unclear. We show that SLAT–/– mice displayed a developmental defect at one of the earliest stages of thymocyte differentiation, the double-negative 1 (DN1) stage, leading to decreased peripheral T cell numbers. SLAT–/– peripheral CD4+ T cells demonstrated impaired TCR/CD28-induced proliferation and IL-2 production, which was rescued by the addition of exogenous IL-2. Importantly, SLAT–/– mice were grossly impaired in their ability to mount not only Th2, but also Th1-mediated lung inflammatory responses, as evidenced by reduced airway neutrophilia and eosinophilia, respectively. Levels of Th1 and Th2 cytokine in the lungs were also markedly reduced, paralleling the reduction in pulmonary inflammation. This defect in mounting Th1/Th2 responses, which was also evident in vitro, was traced to a severe reduction in Ca2+ mobilization from ER stores, which consequently led to defective TCR/CD28-induced translocation of nuclear factor of activated T cells 1/2 (NFATc1/2). Thus, SLAT is required for thymic DN1 cell expansion, T cell activation, and Th1 and Th2 inflammatory responses.

Authors

Stéphane Bécart, Céline Charvet, Ann J. Canonigo Balancio, Carl De Trez, Yoshihiko Tanaka, Wei Duan, Carl Ware, Michael Croft, Amnon Altman

×

Full Text PDF | Download (1.87 MB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts