Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Usage Information

Paraspeckle protein p54nrb links Sox9-mediated transcription with RNA processing during chondrogenesis in mice
Kenji Hata, … , Vincent R. Harley, Toshiyuki Yoneda
Kenji Hata, … , Vincent R. Harley, Toshiyuki Yoneda
Published August 1, 2008
Citation Information: J Clin Invest. 2008;118(9):3098-3108. https://doi.org/10.1172/JCI31373.
View: Text | PDF
Research Article Bone Biology

Paraspeckle protein p54nrb links Sox9-mediated transcription with RNA processing during chondrogenesis in mice

  • Text
  • PDF
Abstract

The Sox9 transcription factor plays an essential role in promoting chondrogenesis and regulating expression of chondrocyte extracellular-matrix genes. To identify genes that interact with Sox9 in promoting chondrocyte differentiation, we screened a cDNA library generated from the murine chondrogenic ATDC5 cell line to identify activators of the collagen, type II, α 1 (Col2a1) promoter. Here we have shown that paraspeckle regulatory protein 54-kDa nuclear RNA-binding protein (p54nrb) is an essential link between Sox9-regulated transcription and maturation of Sox9-target gene mRNA. We found that p54nrb physically interacted with Sox9 and enhanced Sox9-dependent transcriptional activation of the Col2a1 promoter. In ATDC5 cells, p54nrb colocalized with Sox9 protein in nuclear paraspeckle bodies, and knockdown of p54nrb suppressed Sox9-dependent Col2a1 expression and promoter activity. We generated a p54nrb mutant construct lacking RNA recognition motifs, and overexpression of mutant p54nrb in ATDC5 cells markedly altered the appearance of paraspeckle bodies and inhibited the maturation of Col2a1 mRNA. The mutant p54nrb inhibited chondrocyte differentiation of mesenchymal cells and mouse metatarsal explants. Furthermore, transgenic mice expressing the mutant p54nrb in the chondrocyte lineage exhibited dwarfism associated with impairment of chondrogenesis. These data suggest that p54nrb plays an important role in the regulation of Sox9 function and the formation of paraspeckle bodies during chondrogenesis.

Authors

Kenji Hata, Riko Nishimura, Shuji Muramatsu, Akio Matsuda, Takuma Matsubara, Katsuhiko Amano, Fumiyo Ikeda, Vincent R. Harley, Toshiyuki Yoneda

×

Usage data is cumulative from July 2021 through July 2022.

Usage JCI PMC
Text version 390 69
PDF 46 22
Figure 177 45
Citation downloads 22 0
Totals 635 136
Total Views 771
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts