Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Usage Information

The antithrombotic potential of selective blockade of talin-dependent integrin αIIbβ3 (platelet GPIIb–IIIa) activation
Brian G. Petrich, … , Sanford J. Shattil, Mark H. Ginsberg
Brian G. Petrich, … , Sanford J. Shattil, Mark H. Ginsberg
Published August 1, 2007
Citation Information: J Clin Invest. 2007;117(8):2250-2259. https://doi.org/10.1172/JCI31024.
View: Text | PDF
Research Article Hematology

The antithrombotic potential of selective blockade of talin-dependent integrin αIIbβ3 (platelet GPIIb–IIIa) activation

  • Text
  • PDF
Abstract

In vitro studies indicate that binding of talin to the β3 integrin cytoplasmic domain (tail) results in integrin αIIbβ3 (GPIIb–IIIa) activation. Here we tested the importance of talin binding for integrin activation in vivo and its biological significance by generating mice harboring point mutations in the β3 tail. We introduced a β3(Y747A) substitution that disrupts the binding of talin, filamin, and other cytoplasmic proteins and a β3(L746A) substitution that selectively disrupts interactions only with talin. Platelets from animals homozygous for each mutation showed impaired agonist-induced fibrinogen binding and platelet aggregation, providing proof that inside-out signals that activate αIIbβ3 require binding of talin to the β3 tail. β3(L746A) mice were resistant to both pulmonary thromboembolism and to ferric chloride–induced thrombosis of the carotid artery. Pathological bleeding, measured by the presence of fecal blood and development of anemia, occurred in 53% of β3(Y747A) and virtually all β3-null animals examined. Remarkably, less than 5% of β3(L746A) animals exhibited this form of bleeding. These results establish that αIIbβ3 activation in vivo is dependent on the interaction of talin with the β3 integrin cytoplasmic domain. Furthermore, they suggest that modulation of β3 integrin–talin interactions may provide an attractive target for antithrombotics and result in a reduced risk of pathological bleeding.

Authors

Brian G. Petrich, Per Fogelstrand, Anthony W. Partridge, Nima Yousefi, Ararat J. Ablooglu, Sanford J. Shattil, Mark H. Ginsberg

×

Usage data is cumulative from August 2021 through August 2022.

Usage JCI PMC
Text version 360 50
PDF 35 70
Figure 112 0
Table 10 0
Citation downloads 8 0
Totals 525 120
Total Views 645
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts