Duchenne muscular dystrophy (DMD) is a lethal X-linked disorder associated with dystrophin deficiency that results in chronic inflammation and severe skeletal muscle degeneration. In DMD mouse models and patients, we find that IκB kinase/NF-κB (IKK/NF-κB) signaling is persistently elevated in immune cells and regenerative muscle fibers. Ablation of 1 allele of the p65 subunit of NF-κB was sufficient to improve pathology in mdx mice, a model of DMD. In addition, conditional deletion of IKKβ in mdx mice elucidated that NF-κB functions in activated macrophages to promote inflammation and muscle necrosis and in skeletal muscle fibers to limit regeneration through the inhibition of muscle progenitor cells. Furthermore, specific pharmacological inhibition of IKK resulted in improved pathology and muscle function in mdx mice. Collectively, these results underscore the critical role of NF-κB in the progression of muscular dystrophy and suggest the IKK/NF-κB signaling pathway as a potential therapeutic target for DMD.
Swarnali Acharyya, S. Armando Villalta, Nadine Bakkar, Tepmanas Bupha-Intr, Paul M.L. Janssen, Micheal Carathers, Zhi-Wei Li, Amer A. Beg, Sankar Ghosh, Zarife Sahenk, Michael Weinstein, Katherine L. Gardner, Jill A. Rafael-Fortney, Michael Karin, James G. Tidball, Albert S. Baldwin, Denis C. Guttridge