Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Familial Alzheimer disease–linked mutations specifically disrupt Ca2+ leak function of presenilin 1
Omar Nelson, … , Bart de Strooper, Ilya Bezprozvanny
Omar Nelson, … , Bart de Strooper, Ilya Bezprozvanny
Published May 1, 2007
Citation Information: J Clin Invest. 2007;117(5):1230-1239. https://doi.org/10.1172/JCI30447.
View: Text | PDF
Research Article Neuroscience

Familial Alzheimer disease–linked mutations specifically disrupt Ca2+ leak function of presenilin 1

  • Text
  • PDF
Abstract

Mutations in presenilins are responsible for approximately 40% of all early-onset familial Alzheimer disease (FAD) cases in which a genetic cause has been identified. In addition, a number of mutations in presenilin-1 (PS1) have been suggested to be associated with the occurrence of frontal temporal dementia (FTD). Presenilins are highly conserved transmembrane proteins that support cleavage of the amyloid precursor protein by γ-secretase. Recently, we discovered that presenilins also function as passive ER Ca2+ leak channels. Here we used planar lipid bilayer reconstitution assays and Ca2+ imaging experiments with presenilin-null mouse embryonic fibroblasts to analyze ER Ca2+ leak function of 6 FAD-linked PS1 mutants and 3 known FTD-associated PS1 mutants. We discovered that L166P, A246E, E273A, G384A, and P436Q FAD mutations in PS1 abolished ER Ca2+ leak function of PS1. In contrast, A79V FAD mutation or FTD-associated mutations (L113P, G183V, and Rins352) did not appear to affect ER Ca2+ leak function of PS1 in our experiments. We validated our findings in Ca2+ imaging experiments with primary fibroblasts obtained from an FAD patient possessing mutant PS1-A246E. Our results indicate that many FAD mutations in presenilins are loss-of-function mutations affecting ER Ca2+ leak activity. In contrast, none of the FTD-associated mutations affected ER Ca2+ leak function of PS1, indicating that the observed effects are disease specific. Our observations are consistent with the potential role of disturbed Ca2+ homeostasis in Alzheimer disease pathogenesis.

Authors

Omar Nelson, Huiping Tu, Tianhua Lei, Mostafa Bentahir, Bart de Strooper, Ilya Bezprozvanny

×

Figure 2

Rescue of Ca2+ signaling defects in DKO MEFs with PS1-FAD mutants.

Options: View larger image (or click on image) Download as PowerPoint
Rescue of Ca2+ signaling defects in DKO MEFs with PS1-FAD mutants.
     ...
The representative images of BK-induced Ca2+ responses in DKO cells transfected with EGFP, EGFP+PS1, EGFP+PS1-A79V, EGFP+PS1-L166P, EGFP+PS1-A246E, EGFP+PS1-E273A, EGFP+PS1-G384A, and EGFP+PS1-P436Q expression plasmids. The 340:380 Fura-2 ratio images shown are prior to application of BK (–1 min) and 5 seconds, 2 minutes, and 5 minutes after BK application. The 340:380 Fura-2 ratios are presented using pseudocolor scale (the calibration bar is shown at top). The GFP images were used to identify transfected cells. The representative Ca2+ traces recorded in individual transfected DKO cells are shown at right for each expression construct.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts