Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Familial Alzheimer disease–linked mutations specifically disrupt Ca2+ leak function of presenilin 1
Omar Nelson, … , Bart de Strooper, Ilya Bezprozvanny
Omar Nelson, … , Bart de Strooper, Ilya Bezprozvanny
Published May 1, 2007
Citation Information: J Clin Invest. 2007;117(5):1230-1239. https://doi.org/10.1172/JCI30447.
View: Text | PDF
Research Article Neuroscience

Familial Alzheimer disease–linked mutations specifically disrupt Ca2+ leak function of presenilin 1

  • Text
  • PDF
Abstract

Mutations in presenilins are responsible for approximately 40% of all early-onset familial Alzheimer disease (FAD) cases in which a genetic cause has been identified. In addition, a number of mutations in presenilin-1 (PS1) have been suggested to be associated with the occurrence of frontal temporal dementia (FTD). Presenilins are highly conserved transmembrane proteins that support cleavage of the amyloid precursor protein by γ-secretase. Recently, we discovered that presenilins also function as passive ER Ca2+ leak channels. Here we used planar lipid bilayer reconstitution assays and Ca2+ imaging experiments with presenilin-null mouse embryonic fibroblasts to analyze ER Ca2+ leak function of 6 FAD-linked PS1 mutants and 3 known FTD-associated PS1 mutants. We discovered that L166P, A246E, E273A, G384A, and P436Q FAD mutations in PS1 abolished ER Ca2+ leak function of PS1. In contrast, A79V FAD mutation or FTD-associated mutations (L113P, G183V, and Rins352) did not appear to affect ER Ca2+ leak function of PS1 in our experiments. We validated our findings in Ca2+ imaging experiments with primary fibroblasts obtained from an FAD patient possessing mutant PS1-A246E. Our results indicate that many FAD mutations in presenilins are loss-of-function mutations affecting ER Ca2+ leak activity. In contrast, none of the FTD-associated mutations affected ER Ca2+ leak function of PS1, indicating that the observed effects are disease specific. Our observations are consistent with the potential role of disturbed Ca2+ homeostasis in Alzheimer disease pathogenesis.

Authors

Omar Nelson, Huiping Tu, Tianhua Lei, Mostafa Bentahir, Bart de Strooper, Ilya Bezprozvanny

×

Full Text PDF | Download (1.02 MB)

Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts