Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Therapeutic anti-EGFR antibody 806 generates responses in murine de novo EGFR mutant–dependent lung carcinomas
Danan Li, Hongbin Ji, Sara Zaghlul, Kate McNamara, Mei-Chih Liang, Takeshi Shimamura, Shigeto Kubo, Masaya Takahashi, Lucian R. Chirieac, Robert F. Padera, Andrew M. Scott, Achim A. Jungbluth, Webster K. Cavenee, Lloyd J. Old, George D. Demetri, Kwok-Kin Wong
Danan Li, Hongbin Ji, Sara Zaghlul, Kate McNamara, Mei-Chih Liang, Takeshi Shimamura, Shigeto Kubo, Masaya Takahashi, Lucian R. Chirieac, Robert F. Padera, Andrew M. Scott, Achim A. Jungbluth, Webster K. Cavenee, Lloyd J. Old, George D. Demetri, Kwok-Kin Wong
View: Text | PDF
Research Article Oncology

Therapeutic anti-EGFR antibody 806 generates responses in murine de novo EGFR mutant–dependent lung carcinomas

  • Text
  • PDF
Abstract

Activating EGFR mutations occur in human non–small cell lung cancer (NSCLC), with 5% of human lung squamous cell carcinomas having EGFRvIII mutations and approximately 10%–30% of lung adenocarcinomas having EGFR kinase domain mutations. An EGFR-targeting monoclonal antibody, mAb806, recognizes a conformational epitope of WT EGFR as well as the truncated EGFRvIII mutant. To explore the anticancer spectrum of this antibody for EGFR targeted cancer therapy, mAb806 was used to treat genetically engineered mice with lung tumors that were driven by either EGFRvIII or EGFR kinase domain mutations. Our results demonstrate that mAb806 is remarkably effective in blocking EGFRvIII signaling and inducing tumor cell apoptosis, resulting in dramatic tumor regression in the EGFRvIII-driven murine lung cancers. Another EGFR-targeting antibody, cetuximab, failed to show activity in these lung tumors. Furthermore, treatment of murine lung tumors driven by the EGFR kinase domain mutation with mAb806 also induced significant tumor regression, albeit to a less degree than that observed in EGFRvIII-driven tumors. Taken together, these data support the hypothesis that mAb806 may lead to significant advancements in the treatment of the population of NSCLC patients with these 2 classes of EGFR mutations.

Authors

Danan Li, Hongbin Ji, Sara Zaghlul, Kate McNamara, Mei-Chih Liang, Takeshi Shimamura, Shigeto Kubo, Masaya Takahashi, Lucian R. Chirieac, Robert F. Padera, Andrew M. Scott, Achim A. Jungbluth, Webster K. Cavenee, Lloyd J. Old, George D. Demetri, Kwok-Kin Wong

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 774 85
PDF 95 24
Figure 243 2
Citation downloads 78 0
Totals 1,190 111
Total Views 1,301
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts