Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Newborn humans manifest autoantibodies to defined self molecules detected by antigen microarray informatics
Yifat Merbl, … , Francisco J. Quintana, Irun R. Cohen
Yifat Merbl, … , Francisco J. Quintana, Irun R. Cohen
Published March 1, 2007
Citation Information: J Clin Invest. 2007;117(3):712-718. https://doi.org/10.1172/JCI29943.
View: Text | PDF
Research Article

Newborn humans manifest autoantibodies to defined self molecules detected by antigen microarray informatics

  • Text
  • PDF
Abstract

Autoimmune diseases are often marked by autoantibodies binding to self antigens. However, many healthy persons also manifest autoantibodies that bind to self antigens, known as natural autoantibodies. In order to characterize natural autoantibodies present at birth, we used an antigen microarray (antigen chip) to analyze informatically (with clustering algorithms and correlation mapping) the natural IgM, IgA, and IgG autoantibody repertoires present in 10 pairs of sera from healthy mothers and the cords of their newborn babies. These autoantibodies were found to bind to 305 different, mostly self, molecules. We report that in utero, humans develop IgM and IgA autoantibodies to relatively uniform sets of self molecules. The global patterns of maternal IgM autoantibodies significantly diverged from those at birth, although certain reactivities remained common to both maternal and cord samples. Because maternal IgG antibodies (unlike IgM and IgA) cross the placenta, maternal and cord IgG autoantibodies showed essentially identical reactivities. We found that some self antigens that bind cord autoantibodies were among the target self antigens associated with autoimmune diseases later in life. Thus, the obviously benign autoimmunity prevalent at birth may provide the basis for the emergence of some autoimmune diseases relatively prevalent later in life.

Authors

Yifat Merbl, Merav Zucker-Toledano, Francisco J. Quintana, Irun R. Cohen

×

Full Text PDF | Download (395.32 KB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts