Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
TLR4 links innate immunity and fatty acid–induced insulin resistance
Hang Shi, … , Huali Yin, Jeffrey S. Flier
Hang Shi, … , Huali Yin, Jeffrey S. Flier
Published November 1, 2006
Citation Information: J Clin Invest. 2006;116(11):3015-3025. https://doi.org/10.1172/JCI28898.
View: Text | PDF
Research Article Metabolism

TLR4 links innate immunity and fatty acid–induced insulin resistance

  • Text
  • PDF
Abstract

TLR4 is the receptor for LPS and plays a critical role in innate immunity. Stimulation of TLR4 activates proinflammatory pathways and induces cytokine expression in a variety of cell types. Inflammatory pathways are activated in tissues of obese animals and humans and play an important role in obesity-associated insulin resistance. Here we show that nutritional fatty acids, whose circulating levels are often increased in obesity, activate TLR4 signaling in adipocytes and macrophages and that the capacity of fatty acids to induce inflammatory signaling in adipose cells or tissue and macrophages is blunted in the absence of TLR4. Moreover, mice lacking TLR4 are substantially protected from the ability of systemic lipid infusion to (a) suppress insulin signaling in muscle and (b) reduce insulin-mediated changes in systemic glucose metabolism. Finally, female C57BL/6 mice lacking TLR4 have increased obesity but are partially protected against high fat diet–induced insulin resistance, possibly due to reduced inflammatory gene expression in liver and fat. Taken together, these data suggest that TLR4 is a molecular link among nutrition, lipids, and inflammation and that the innate immune system participates in the regulation of energy balance and insulin resistance in response to changes in the nutritional environment.

Authors

Hang Shi, Maia V. Kokoeva, Karen Inouye, Iphigenia Tzameli, Huali Yin, Jeffrey S. Flier

×

Figure 2

FFAs stimulate cytokine expression in macrophages.

Options: View larger image (or click on image) Download as PowerPoint
FFAs stimulate cytokine expression in macrophages.
(A) Saturated FFAs in...
(A) Saturated FFAs induce IL-6 mRNA in the RAW264.7 macrophage cell line. Cells were treated with the indicated FFAs (200 μM) for 8 hours. Saturated fatty acids include C12:0, C14:0, C16:0, and C18:0. AA, arachidonic acid; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid. (B) Palmitate stimulates TNF-α expression in a dose-dependent manner. RAW264.7 cells were treated with the indicated doses of palmitate or LPS for 8 hours. (C) The polyunsaturated fatty acid DHA blocks saturated FFA-induced TNF-α expression. RAW264.7 cells were pretreated with 200 μM DHA for 2 hours and were then treated with 200 μM of various saturated FFAs for 8 hours. Real-time RT-PCR was used to measure mRNA levels. Data are expressed as mean ± SEM.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts