Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Receptor heterodimerization: a new level of cross-talk
Peter J. Barnes
Peter J. Barnes
Published May 1, 2006
Citation Information: J Clin Invest. 2006;116(5):1210-1212. https://doi.org/10.1172/JCI28535.
View: Text | PDF
Commentary

Receptor heterodimerization: a new level of cross-talk

  • Text
  • PDF
Abstract

Most G protein–coupled receptors (GPCRs) probably exist as homodimers, but it is increasingly recognized that GPCRs may also dimerize with other types of GPCRs and that this physical interaction may affect the function of either receptor. A study in this issue of the JCI demonstrates how heterodimerization between prostaglandin E receptors and β2–adrenergic receptors (β2ARs) in airway smooth muscle cells results in uncoupling of β2ARs and a diminished bronchodilator response to β2AR agonists (see the related article beginning on page 1400). This illustrates what we believe to be a novel mechanism of receptor cross-talk and highlights the potential importance of GPCR heterodimerization in diseases such as asthma and how this could lead to the development of more specific therapies in the future.

Authors

Peter J. Barnes

×

Full Text PDF | Download (470.95 KB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts