Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Myelin oligodendrocyte glycoprotein–specific T and B cells cooperate to induce a Devic-like disease in mice
Estelle Bettelli, … , Raymond A. Sobel, Vijay K. Kuchroo
Estelle Bettelli, … , Raymond A. Sobel, Vijay K. Kuchroo
Published September 1, 2006
Citation Information: J Clin Invest. 2006;116(9):2393-2402. https://doi.org/10.1172/JCI28334.
View: Text | PDF
Research Article Autoimmunity

Myelin oligodendrocyte glycoprotein–specific T and B cells cooperate to induce a Devic-like disease in mice

  • Text
  • PDF
Abstract

Multiple sclerosis (MS) is a clinically and pathologically heterogeneous inflammatory/demyelinating disease of the CNS. In the MS variant Devic disease, lesions are predominantly found in the optic nerves and spinal cord but not the brain. The immunological bases of the different forms of MS are unknown. We previously generated myelin oligodendrocyte glycoprotein–specific (MOG-specific) TCR transgenic mice (TCRMOG mice; also referred to as 2D2 mice) and reported that a large proportion of these mice develop spontaneous isolated optic neuritis. We have now crossed the TCRMOG mice with MOG-specific Ig heavy-chain knock-in mice (IgHMOG mice; also referred to as Th mice), in which one-third of the B cells are specific for MOG. In these mice, MOG-specific B cells are very efficient in presenting MOG to the transgenic T cells and undergo class switching to IgG1 in the presence of the transgenic T cells. Sixty percent of TCRMOG×IgHMOG mice spontaneously developed a severe form of experimental autoimmune encephalomyelitis (EAE). Histological examination of the CNS revealed a selective distribution of meningeal and parenchymal inflammatory lesions in the spinal cord and optic nerves. Thus, CNS antigen–specific T and B cells cooperate to induce a distinct clinicopathologic EAE pattern that closely replicates human Devic disease.

Authors

Estelle Bettelli, Dominique Baeten, Anneli Jäger, Raymond A. Sobel, Vijay K. Kuchroo

×
Options: View larger image (or click on image) Download as PowerPoint
Spontaneous Devic-like disease in TCRMOG×IgHMOG mice

Spontaneous Devic-like disease in TCRMOG×IgHMOG mice


Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts