Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact

Usage Information

Nicotine induces cell proliferation by β-arrestin–mediated activation of Src and Rb–Raf-1 pathways
Piyali Dasgupta, … , Eric Haura, Srikumar Chellappan
Piyali Dasgupta, … , Eric Haura, Srikumar Chellappan
Published August 1, 2006
Citation Information: J Clin Invest. 2006;116(8):2208-2217. https://doi.org/10.1172/JCI28164.
View: Text | PDF | Corrigendum
Research Article Oncology

Nicotine induces cell proliferation by β-arrestin–mediated activation of Src and Rb–Raf-1 pathways

  • Text
  • PDF
Abstract

Recent studies have shown that nicotine, a component of cigarette smoke, can stimulate the proliferation of non-neuronal cells. While nicotine is not carcinogenic by itself, it has been shown to induce cell proliferation and angiogenesis. Here we find that mitogenic effects of nicotine in non–small cell lung cancers (NSCLCs) are analogous to those of growth factors and involve activation of Src, induction of Rb–Raf-1 interaction, and phosphorylation of Rb. Analysis of human NSCLC tumors show enhanced levels of Rb–Raf-1 complexes compared with adjacent normal tissue. The mitogenic effects of nicotine were mediated via the α7-nAChR subunit and resulted in enhanced recruitment of E2F1 and Raf-1 on proliferative promoters in NSCLC cell lines and human lung tumors. Nicotine stimulation of NSCLC cells caused dissociation of Rb from these promoters. Proliferative signaling via nicotinic acetylcholine receptors (nAChRs) required the scaffolding protein β-arrestin; ablation of β-arrestin or disruption of the Rb–Raf-1 interaction blocked nicotine-induced proliferation of NSCLCs. Additionally, suppression of β-arrestin also blocked activation of Src, suppressed levels of phosphorylated ERK, and abrogated Rb–Raf-1 binding in response to nicotine. It appears that nicotine induces cell proliferation by β-arrestin–mediated activation of the Src and Rb–Raf-1 pathways.

Authors

Piyali Dasgupta, Shipra Rastogi, Smitha Pillai, Dalia Ordonez-Ercan, Mark Morris, Eric Haura, Srikumar Chellappan

×

Usage data is cumulative from March 2020 through March 2021.

Usage JCI PMC
Text version 312 80
PDF 35 80
Figure 68 0
Supplemental data 0 1
Citation downloads 14 0
Totals 429 161
Total Views 590
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts