Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Critical function of Bmx/Etk in ischemia-mediated arteriogenesis and angiogenesis
Yun He, … , Kari Alitalo, Wang Min
Yun He, … , Kari Alitalo, Wang Min
Published September 1, 2006
Citation Information: J Clin Invest. 2006;116(9):2344-2355. https://doi.org/10.1172/JCI28123.
View: Text | PDF
Research Article Angiogenesis

Critical function of Bmx/Etk in ischemia-mediated arteriogenesis and angiogenesis

  • Text
  • PDF
Abstract

Bmx/Etk non-receptor tyrosine protein kinase has been implicated in endothelial cell migration and tube formation in vitro. However, the role of Bmx in vivo is not known. Bmx is highly induced in the vasculature of ischemic hind limbs. We used both mice with a genetic deletion of Bmx (Bmx-KO mice) and transgenic mice expressing a constitutively active form of Bmx under the endothelial Tie-2 enhancer/promoter (Bmx-SK-Tg mice) to study the role of Bmx in ischemia-mediated arteriogenesis/angiogenesis. In response to ischemia, Bmx-KO mice had markedly reduced, whereas Bmx-SK-Tg mice had enhanced, clinical recovery, limb perfusion, and ischemic reserve capacity when compared with nontransgenic control mice. The functional outcomes in these mice were correlated with ischemia-initiated arteriogenesis, capillary formation, and vessel maturation as well as Bmx-dependent expression/activation of TNF receptor 2– and VEGFR2-mediated (TNFR2/VEGFR2-mediated) angiogenic signaling in both hind limb and bone marrow. More importantly, results of bone marrow transplantation studies showed that Bmx in bone marrow–derived cells plays a critical role in the early phase of ischemic tissue remodeling. Our study provides the first demonstration to our knowledge that Bmx in endothelium and bone marrow plays a critical role in arteriogenesis/angiogenesis in vivo and suggests that Bmx may be a novel target for the treatment of vascular diseases such as coronary artery disease and peripheral arterial disease.

Authors

Yun He, Yan Luo, Shibo Tang, Iiro Rajantie, Petri Salven, Matthias Heil, Rong Zhang, Dianhong Luo, Xianghong Li, Hongbo Chi, Jun Yu, Peter Carmeliet, Wolfgang Schaper, Albert J. Sinusas, William C. Sessa, Kari Alitalo, Wang Min

×

Full Text PDF | Download (1.40 MB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts