Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
In vivo antigen delivery by a Salmonella typhimurium type III secretion system for therapeutic cancer vaccines
Hiroyoshi Nishikawa, Eiichi Sato, Gabriel Briones, Li-Mei Chen, Mitsutoshi Matsuo, Yasuhiro Nagata, Gerd Ritter, Elke Jäger, Hideki Nomura, Shigeto Kondo, Isao Tawara, Takuma Kato, Hiroshi Shiku, Lloyd J. Old, Jorge E. Galán, Sacha Gnjatic
Hiroyoshi Nishikawa, Eiichi Sato, Gabriel Briones, Li-Mei Chen, Mitsutoshi Matsuo, Yasuhiro Nagata, Gerd Ritter, Elke Jäger, Hideki Nomura, Shigeto Kondo, Isao Tawara, Takuma Kato, Hiroshi Shiku, Lloyd J. Old, Jorge E. Galán, Sacha Gnjatic
View: Text | PDF
Research Article

In vivo antigen delivery by a Salmonella typhimurium type III secretion system for therapeutic cancer vaccines

  • Text
  • PDF
Abstract

Bacterial vectors may offer many advantages over other antigen delivery systems for cancer vaccines. We engineered a Salmonella typhimuriumvaccine strain to deliver the NY-ESO-1 tumor antigen (S. typhimurium–NY-ESO-1) through a type III protein secretion system. The S. typhimurium–NY-ESO-1 construct elicited NY-ESO-1–specific CD8+ and CD4+ T cells from peripheral blood lymphocytes ofcancer patients in vitro. Oral administration of S. typhimurium–NY-ESO-1 to mice resulted in the regression of established NY-ESO-1–expressing tumors. Intratumoral inoculation of S. typhimurium–NY-ESO-1 to NY-ESO-1–negative tumors resulted in delivery of antigen in vivo and led to tumor regression in the presence of preexisting NY-ESO-1–specific CD8+ T cells. Specific T cell responses against at least 2 unrelated tumor antigens not contained in the vaccine were observed, demonstrating epitope spreading. We propose that antigen delivery through the S. typhimuriumtype III secretion system is a promising novel strategy for cancer vaccine development.

Authors

Hiroyoshi Nishikawa, Eiichi Sato, Gabriel Briones, Li-Mei Chen, Mitsutoshi Matsuo, Yasuhiro Nagata, Gerd Ritter, Elke Jäger, Hideki Nomura, Shigeto Kondo, Isao Tawara, Takuma Kato, Hiroshi Shiku, Lloyd J. Old, Jorge E. Galán, Sacha Gnjatic

×

Figure 3

S. typhimurium type III secretion system induces antigen-specific primary CD8+ T cells from PBMCs.

Options: View larger image (or click on image) Download as PowerPoint

S. typhimurium
                  type III secretion system induces anti...
(A) CD8+ T cells derived from PBMCs of NW29 and NW634 were presensitized by CD4–CD8– PBMCs infected with S. typhimurium–NY-ESO-1 or the control strain as described in Methods, and induction of specific CD8+ T cells was analyzed by ELISPOT assay for recognition of autologous EBV-B cells pulsed with peptides or infected with recombinant Fowlpox (rFowlpox) virus. Data are mean ± SD. (B) NY-ESO-1–specific CD8+ T cells induced from NW29 were stained with NY-ESO-192–100/HLA-Cw*0304 tetramer–PE and anti-CD8–Tricolor and analyzed by flow cytometry. Experiments were performed independently at least twice with similar results. Percentages indicate frequency of tetramer-stained cells within CD8+ cells.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts