Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Bacterial neuraminidase facilitates mucosal infection by participating in biofilm production
Grace Soong, … , Liang Tong, Alice Prince
Grace Soong, … , Liang Tong, Alice Prince
Published August 1, 2006
Citation Information: J Clin Invest. 2006;116(8):2297-2305. https://doi.org/10.1172/JCI27920.
View: Text | PDF | Corrigendum
Research Article Microbiology

Bacterial neuraminidase facilitates mucosal infection by participating in biofilm production

  • Text
  • PDF
Abstract

Many respiratory pathogens, including Hemophilus influenzae, Streptococcus pneumoniae, and Pseudomonas aeruginosa, express neuraminidases that can cleave α2,3-linked sialic acids from glycoconjugates. As mucosal surfaces are heavily sialylated, neuraminidases have been thought to modify epithelial cells by exposing potential bacterial receptors. However, in contrast to neuraminidase produced by the influenza virus, a role for bacterial neuraminidase in pathogenesis has not yet been clearly established. We constructed a mutant of P. aeruginosa PAO1 by deleting the PA2794 neuraminidase locus (Δ2794) and tested its virulence and immunostimulatory capabilities in a mouse model of infection. Although fully virulent when introduced i.p., the Δ2794 mutant was unable to establish respiratory infection by i.n. inoculation. The inability to colonize the respiratory tract correlated with diminished production of biofilm, as assessed by scanning electron microscopy and in vitro assays. The importance of neuraminidase in biofilm production was further demonstrated by showing that viral neuraminidase inhibitors in clinical use blocked P. aeruginosa biofilm production in vitro as well. The P. aeruginosa neuraminidase has a key role in the initial stages of pulmonary infection by targeting bacterial glycoconjugates and contributing to the formation of biofilm. Inhibiting bacterial neuraminidases could provide a novel mechanism to prevent bacterial pneumonia.

Authors

Grace Soong, Amanda Muir, Marisa I. Gomez, Jonathan Waks, Bharat Reddy, Paul Planet, Pradeep K. Singh, Yukihiro Kanetko, Matthew C. Wolfgang, Yu-Shan Hsiao, Liang Tong, Alice Prince

×

Full Text PDF

Download PDF (913.97 KB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts