Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
IL-15 induces CD4+ effector memory T cell production and tissue emigration in nonhuman primates
Louis J. Picker, Edward F. Reed-Inderbitzin, Shoko I. Hagen, John B. Edgar, Scott G. Hansen, Alfred Legasse, Shannon Planer, Michael Piatak, Jeffrey D. Lifson, Vernon C. Maino, Michael K. Axthelm, Francois Villinger
Louis J. Picker, Edward F. Reed-Inderbitzin, Shoko I. Hagen, John B. Edgar, Scott G. Hansen, Alfred Legasse, Shannon Planer, Michael Piatak, Jeffrey D. Lifson, Vernon C. Maino, Michael K. Axthelm, Francois Villinger
View: Text | PDF
Research Article Virology

IL-15 induces CD4+ effector memory T cell production and tissue emigration in nonhuman primates

  • Text
  • PDF
Abstract

HIV infection selectively targets CD4+ effector memory T (TEM) cells, resulting in dramatic depletion of CD4+ T cells in mucosal effector sites in early infection. Regeneration of the TEM cell compartment is slow and incomplete, even when viral replication is controlled by antiretroviral therapy (ART). Here, we demonstrate that IL-15 dramatically increases in vivo proliferation of rhesus macaque (RM) CD4+ and CD8+ TEM cells with little effect on the naive or central memory T (TCM) cell subsets, a response pattern that is quite distinct from that of either IL-2 or IL-7. TEM cells produced in response to IL-15 did not accumulate in blood. Rather, 5-bromo-2′-deoxyuridine (BrdU) labeling studies suggest that many of these cells rapidly disperse to extralymphoid effector sites, where they manifest (slow) decay kinetics indistinguishable from that of untreated controls. In RMs with uncontrolled SIV infection and highly activated immune systems, IL-15 did not significantly increase CD4+ TEM cell proliferation, but with virologic control and concomitant reduction in immune activation by ART, IL-15 responsiveness was again observed. These data suggest that therapeutic use of IL-15 in the setting of ART might facilitate specific restoration of the CD4+ T cell compartment that is the primary target of HIV with less risk of exhausting precursor T cell compartments or generating potentially deleterious regulatory subsets.

Authors

Louis J. Picker, Edward F. Reed-Inderbitzin, Shoko I. Hagen, John B. Edgar, Scott G. Hansen, Alfred Legasse, Shannon Planer, Michael Piatak, Jeffrey D. Lifson, Vernon C. Maino, Michael K. Axthelm, Francois Villinger

×

Figure 5

IL-15–responsive memory subsets do not accumulate in peripheral blood.

Options: View larger image (or click on image) Download as PowerPoint
IL-15–responsive memory subsets do not accumulate in peripheral blood.
(...
(A) The fraction of total CD4+ and CD8+ memory T cells in each of the CD28/CCR7–defined subsets in blood (see Figure 1A) is shown before, during, and after IL-15 treatment (the same IL-15–treated RMs shown in Figure 2). Note that despite vast differences in IL-15–induced proliferation between these subsets, their relative frequencies in blood (particularly the TCM-to-TEM ratio) either did not change or changed only transiently. (B) The absolute number of CD4+ and CD8+ CD28–CCR7– TEM cells is shown in the same RMs. Again, profound IL-15–induced proliferation resulted in only transiently increased numbers of TEM cells in peripheral blood.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts