Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Local InsP3-dependent perinuclear Ca2+ signaling in cardiac myocyte excitation-transcription coupling
Xu Wu, … , Joan Heller Brown, Donald M. Bers
Xu Wu, … , Joan Heller Brown, Donald M. Bers
Published March 1, 2006
Citation Information: J Clin Invest. 2006;116(3):675-682. https://doi.org/10.1172/JCI27374.
View: Text | PDF
Research Article Cardiology

Local InsP3-dependent perinuclear Ca2+ signaling in cardiac myocyte excitation-transcription coupling

  • Text
  • PDF
Abstract

Previous work showed that calmodulin (CaM) and Ca2+-CaM–dependent protein kinase II (CaMKII) are somehow involved in cardiac hypertrophic signaling, that inositol 1,4,5-trisphosphate receptors (InsP3Rs) in ventricular myocytes are mainly in the nuclear envelope, where they associate with CaMKII, and that class II histone deacetylases (e.g., HDAC5) suppress hypertrophic gene transcription. Furthermore, HDAC phosphorylation in response to neurohumoral stimuli that induce hypertrophy, such as endothelin-1 (ET-1), activates HDAC nuclear export, thereby regulating cardiac myocyte transcription. Here we demonstrate a detailed mechanistic convergence of these 3 issues in adult ventricular myocytes. We show that ET-1, which activates plasmalemmal G protein–coupled receptors and InsP3 production, elicits local nuclear envelope Ca2+ release via InsP3R. This local Ca2+ release activates nuclear CaMKII, which triggers HDAC5 phosphorylation and nuclear export (derepressing transcription). Remarkably, this Ca2+-dependent pathway cannot be activated by the global Ca2+ transients that cause contraction at each heartbeat. This novel local Ca2+ signaling in excitation-transcription coupling is analogous to but separate (and insulated) from that involved in excitation-contraction coupling. Thus, myocytes can distinguish simultaneous local and global Ca2+ signals involved in contractile activation from those targeting gene expression.

Authors

Xu Wu, Tong Zhang, Julie Bossuyt, Xiaodong Li, Timothy A. McKinsey, John R. Dedman, Eric N. Olson, Ju Chen, Joan Heller Brown, Donald M. Bers

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
Working hypothesis. ET-1 induces HDAC5 nuclear export via a pathway invo...
Working hypothesis. ET-1 induces HDAC5 nuclear export via a pathway involving InsP3 (IP3) and InsP3R (IP3R) with associated CaM and CaMKII, leading to HDAC5 phosphorylation and nuclear export, thereby derepressing the transcription factor MEF2 (see text for additional details). Hyp, hypertrophy.

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts