Factors that determine the spectrum of target organs involved in autoimmune destruction are poorly understood. Although loss of function of autoimmune regulator (AIRE) in thymic epithelial cells is responsible for autoimmunity, the pathogenic roles of AIRE in regulating target-organ specificity remain elusive. In order to gain insight into this issue, we have established NOD mice, an animal model of type 1 diabetes caused by autoimmune attack against β cell islets, in which Aire has been abrogated. Remarkably, acinar cells rather than β cell islets were the major targets of autoimmune destruction in Aire-deficient NOD mice, and this alteration of intra-pancreatic target-organ specificity was associated with production of autoantibody against pancreas-specific protein disulfide isomerase (PDIp), an antigen expressed predominantly by acinar cells. Consistent with this pathological change, the animals were resistant to the development of diabetes. The results suggest that Aire not only is critical for the control of self-tolerance but is also a strong modifier of target-organ specificity through regulation of T cell repertoire diversification. We also demonstrated that transcriptional expression of PDIp was retained in the Aire-deficient NOD thymus, further supporting the concept that Aire may regulate the survival of autoreactive T cells beyond transcriptional control of self-protein expression in the thymus.
Shino Niki, Kiyotaka Oshikawa, Yasuhiro Mouri, Fumiko Hirota, Akemi Matsushima, Masashi Yano, Hongwei Han, Yoshimi Bando, Keisuke Izumi, Masaki Matsumoto, Keiichi I. Nakayama, Noriyuki Kuroda, Mitsuru Matsumoto
Usage data is cumulative from September 2023 through September 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 262 | 42 |
147 | 27 | |
Figure | 182 | 16 |
Table | 93 | 0 |
Supplemental data | 34 | 1 |
Citation downloads | 50 | 0 |
Totals | 768 | 86 |
Total Views | 854 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.