Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Reprogramming of antiviral T cells prevents inactivation and restores T cell activity during persistent viral infection
David G. Brooks, … , Dorian B. McGavern, Michael B.A. Oldstone
David G. Brooks, … , Dorian B. McGavern, Michael B.A. Oldstone
Published June 1, 2006
Citation Information: J Clin Invest. 2006;116(6):1675-1685. https://doi.org/10.1172/JCI26856.
View: Text | PDF
Research Article Virology

Reprogramming of antiviral T cells prevents inactivation and restores T cell activity during persistent viral infection

  • Text
  • PDF
Abstract

Failure to clear persistent viral infections results from the early loss of T cell activity. A pertinent question is whether the immune response is programmed to fail or if nonresponsive T cells can specifically be fixed to eliminate infection. Although evidence indicates that T cell expansion is permanently programmed during the initial priming events, the mechanisms that determine the acquisition of T cell function are less clear. Herein we show that in contrast to expansion, the functional programming of T cell effector and memory responses in vivo in mice is not hardwired during priming but is alterable and responsive to continuous instruction from the antigenic environment. As a direct consequence, dysfunctional T cells can be functionally reactivated during persistent infection even after an initial program of inactivation has been instituted. We also show that early therapeutic reductions in viral replication facilitate the preservation of antiviral CD4+ T cell activity, enabling the long-term control of viral replication. Thus, dysfunctional antiviral T cells can regain activity, providing a basis for future therapeutic strategies to treat persistent viral infections.

Authors

David G. Brooks, Dorian B. McGavern, Michael B.A. Oldstone

×

Figure 1

Virus-specific CD4+ and CD8+ T cells lose initially strong activity during the establishment of a persistent viral infection.

Options: View larger image (or click on image) Download as PowerPoint

                  Virus-specific CD4+
                  and CD8+
      ...
(A) Spleens were isolated from LCMV Arm– (open diamonds) and Cl 13–infected (filled squares) animals and titers of infectious virus determined by plaque assay. Data are expressed as plaque forming units per gram of spleen. The dashed line indicates the lower limit of detection (200 PFU/g spleen). Each time point represents the average ± 1 SD of 3 mice per group. (B and C) LCMV-specific SMARTA (TCR Tg CD4+ T cells) (B) and P14 (TCR Tg CD8+ T cells) cells (C) were cotransferred into mice that were subsequently infected with LCMV Arm or Cl 13. On days 5 (left panels) and 9 (right panels) after infection, splenocytes from individual mice were isolated and the frequency of IFN-γ–, TNF-α–, and IL-2–producing SMARTA and P14 cells assessed by intracellular cytokine staining. The flow plots are gated on SMARTA (B) and P14 (C) cells, and the values represent the percentage of cytokine-producing cells. The flow plots are representative of 4 independent experiments containing 4 mice per group.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts