Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Ibuprofen inhibits cystic fibrosis transmembrane conductance regulator-mediated Cl- secretion.
D C Devor, B D Schultz
D C Devor, B D Schultz
Published August 15, 1998
Citation Information: J Clin Invest. 1998;102(4):679-687. https://doi.org/10.1172/JCI2614.
View: Text | PDF
Research Article

Ibuprofen inhibits cystic fibrosis transmembrane conductance regulator-mediated Cl- secretion.

  • Text
  • PDF
Abstract

We evaluated the acute effects of ibuprofen and salicylic acid on cAMP-mediated Cl- secretion (Isc) in both colonic and airway epithelia. In T84 cells, ibuprofen inhibited the forskolin-dependent Isc in a concentration-dependent manner, having an apparent Ki of 142 microM. Salicylic acid inhibited Isc with an apparent Ki of 646 microM. We determined whether ibuprofen would also inhibit the forskolin-stimulated Isc in primary cultures of mouse trachea epithelia (MTE) and human bronchial epithelia (HBE). Similar to our results in T84 cells, ibuprofen (500 microM) inhibited the forskolin-induced Isc in MTEs and HBEs by 59+/-4% (n = 11) and 39+/-6% (n = 8), respectively. Nystatin was employed to selectively permeabilize the basolateral or apical membrane to determine the effect of ibuprofen on apical Cl- (ICl) and basolateral K+ (IK) currents after stimulation by forskolin. After forskolin stimulation, ibuprofen (500 microM) reduced both the ICl and IK; reducing ICl and IK by 60 and 15%, respectively. To determine whether this inhibition of ICl was due to the inhibition of CFTR, the effects of ibuprofen and salicylic acid on CFTR Cl- channels in excised, inside-out patches from L-cells were evaluated. Ibuprofen (300 microM) reduced CFTR Cl- current by 60+/-16% and this was explained by a short-lived block (approximately 1.2 ms) which causes an apparent reduction in single channel amplitude from 1.07+/-0.04 pA to 0.59+/-0.04 pA (n = 3). Similarly, salicylic acid (3 mM) reduced CFTR Cl- current by 50+/-8% with an apparent reduction in single channel amplitude from 1.08+/-0.03 pA to 0.48+/-0.06 pA (n = 4). Based on these results, we conclude that the NSAIDs ibuprofen and salicylic acid inhibit cAMP-mediated Cl- secretion in human colonic and airway epithelia via a direct inhibition of CFTR Cl- channels as well as basolateral membrane K+ channels. This may reduce their efficacy in conjunction with other therapeutic strategies designed to increase CFTR expression and/or function in secretory epithelia.

Authors

D C Devor, B D Schultz

×

Full Text PDF

Download PDF (323.79 KB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts