Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Chloride channel diseases resulting from impaired transepithelial transport or vesicular function
Thomas J. Jentsch, … , Tanja Maritzen, Anselm A. Zdebik
Thomas J. Jentsch, … , Tanja Maritzen, Anselm A. Zdebik
Published August 1, 2005
Citation Information: J Clin Invest. 2005;115(8):2039-2046. https://doi.org/10.1172/JCI25470.
View: Text | PDF
Review Series

Chloride channel diseases resulting from impaired transepithelial transport or vesicular function

  • Text
  • PDF
Abstract

The transport of anions across cellular membranes is crucial for various functions, including the control of electrical excitability of muscle and nerve, transport of salt and water across epithelia, and the regulation of cell volume or the acidification and ionic homeostasis of intracellular organelles. Given this broad range of functions, it is perhaps not surprising that mutations in Cl– channels lead to a large spectrum of diseases. These diverse pathologies include the muscle disorder myotonia, cystic fibrosis, renal salt loss in Bartter syndrome, kidney stones, deafness, and the bone disease osteopetrosis. This review will focus on diseases related to transepithelial transport and on disorders involving vesicular Cl– channels.

Authors

Thomas J. Jentsch, Tanja Maritzen, Anselm A. Zdebik

×

Full Text PDF | Download (620.05 KB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts