Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Mutations in lipid transporter ABCA12 in harlequin ichthyosis and functional recovery by corrective gene transfer
Masashi Akiyama, … , Daisuke Sawamura, Hiroshi Shimizu
Masashi Akiyama, … , Daisuke Sawamura, Hiroshi Shimizu
Published July 1, 2005
Citation Information: J Clin Invest. 2005;115(7):1777-1784. https://doi.org/10.1172/JCI24834.
View: Text | PDF
Research Article Dermatology

Mutations in lipid transporter ABCA12 in harlequin ichthyosis and functional recovery by corrective gene transfer

  • Text
  • PDF
Abstract

Harlequin ichthyosis (HI) is a devastating skin disorder with an unknown underlying cause. Abnormal keratinocyte lamellar granules (LGs) are a hallmark of HI skin. ABCA12 is a member of the ATP-binding cassette transporter family, and members of the ABCA subfamily are known to have closely related functions as lipid transporters. ABCA3 is involved in lipid secretion via LGs from alveolar type II cells, and missense mutations in ABCA12 have been reported to cause lamellar ichthyosis type 2, a milder form of ichthyosis. Therefore, we hypothesized that HI might be caused by mutations that lead to serious ABCA12 defects. We identify 5 distinct ABCA12 mutations, either in a compound heterozygous or homozygous state, in patients from 4 HI families. All the mutations resulted in truncation or deletion of highly conserved regions of ABCA12. Immunoelectron microscopy revealed that ABCA12 localized to LGs in normal epidermal keratinocytes. We confirmed that ABCA12 defects cause congested lipid secretion in cultured HI keratinocytes and succeeded in obtaining the recovery of LG lipid secretion after corrective gene transfer of ABCA12. We concluded that ABCA12 works as an epidermal keratinocyte lipid transporter and that defective ABCA12 results in a loss of the skin lipid barrier, leading to HI. Our findings not only allow DNA-based early prenatal diagnosis but also suggest the possibility of gene therapy for HI.

Authors

Masashi Akiyama, Yoriko Sugiyama-Nakagiri, Kaori Sakai, James R. McMillan, Maki Goto, Ken Arita, Yukiko Tsuji-Abe, Nobuko Tabata, Kentaro Matsuoka, Rikako Sasaki, Daisuke Sawamura, Hiroshi Shimizu

×

Full Text PDF | Download (1.23 MB)

Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts