Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Autocrine PDGFR signaling promotes mammary cancer metastasis
Martin Jechlinger, … , Hartmut Beug, Stefan Grünert
Martin Jechlinger, … , Hartmut Beug, Stefan Grünert
Published June 1, 2006
Citation Information: J Clin Invest. 2006;116(6):1561-1570. https://doi.org/10.1172/JCI24652.
View: Text | PDF
Research Article Oncology

Autocrine PDGFR signaling promotes mammary cancer metastasis

  • Text
  • PDF
Abstract

Metastasis is the major cause of cancer morbidity, but strategies for direct interference with invasion processes are lacking. Dedifferentiated, late-stage tumor cells secrete multiple factors that represent attractive targets for therapeutic intervention. Here we show that metastatic potential of oncogenic mammary epithelial cells requires an autocrine PDGF/PDGFR loop, which is established as a consequence of TGF-β–induced epithelial-mesenchymal transition (EMT), a faithful in vitro correlate of metastasis. The cooperation of autocrine PDGFR signaling with oncogenic Ras hyperactivates PI3K and is required for survival during EMT. Autocrine PDGFR signaling also contributes to maintenance of EMT, possibly through activation of STAT1 and other distinct pathways. Inhibition of PDGFR signaling interfered with EMT and caused apoptosis in murine and human mammary carcinoma cell lines. Consequently, overexpression of a dominant-negative PDGFR or application of the established cancer drug STI571 interfered with experimental metastasis in mice. Similarly, in mouse mammary tumor virus–Neu (MMTV-Neu) transgenic mice, TGF-β enhanced metastasis of mammary tumors, induced EMT, and elevated PDGFR signaling. Finally, expression of PDGFRα and -β correlated with invasive behavior in human mammary carcinomas. Thus, autocrine PDGFR signaling plays an essential role during cancer progression, suggesting a novel application of STI571 to therapeutically interfere with metastasis.

Authors

Martin Jechlinger, Andreas Sommer, Richard Moriggl, Peter Seither, Norbert Kraut, Paola Capodiecci, Michael Donovan, Carlos Cordon-Cardo, Hartmut Beug, Stefan Grünert

×

Figure 1

EMT-specific upregulation of PDGFR pathway genes generates an autocrine PDGF/PDGFR loop.

Options: View larger image (or click on image) Download as PowerPoint
EMT-specific upregulation of PDGFR pathway genes generates an autocrine ...
(A) Regulation of PDGFR pathway genes in various cell pairs based on EpH4 mouse mammary epithelial cells that undergo TGF-β–induced alterations in epithelial plasticity (see ref. 29). Two cell pairs underwent EMT in response to TGF-β (yellow), 2 underwent reversible scattering (green), and 2 cell pairs served as oncogene controls (black). Shown are the oncogenes cooperating with TGF-β, the predominant signaling pathways activated, and the fold regulation of 5 PDGF pathway genes (red: upregulation; pink: no significant regulation, blue: downregulation). (B) Concentrated, serum-free supernatants from EpRas and EpRasXT cells were tested on huPDGFR-A/FDCP-1 cells for mitogenic activity ([3H]thymidine incorporation). Specificity of the mitogenic response for PDGF was verified by addition of saturating amounts of a neutralizing α–PDGF-A/B antibody.

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts