Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Transplantation of spermatogonial stem cells isolated from leukemic mice restores fertility without inducing leukemia
Kazutoshi Fujita, Hiroshi Ohta, Akira Tsujimura, Tetsuya Takao, Yasushi Miyagawa, Shingo Takada, Kiyomi Matsumiya, Teruhiko Wakayama, Akihiko Okuyama
Kazutoshi Fujita, Hiroshi Ohta, Akira Tsujimura, Tetsuya Takao, Yasushi Miyagawa, Shingo Takada, Kiyomi Matsumiya, Teruhiko Wakayama, Akihiko Okuyama
View: Text | PDF
Research Article Reproductive biology

Transplantation of spermatogonial stem cells isolated from leukemic mice restores fertility without inducing leukemia

  • Text
  • PDF
Abstract

More than 70% of patients survive childhood leukemia, but chemotherapy and radiation therapy cause irreversible impairment of spermatogenesis. Although autotransplantation of germ cells holds promise for restoring fertility, contamination by leukemic cells may induce relapse. In this study, we isolated germ cells from leukemic mice by FACS sorting. The cell population in the high forward-scatter and low side-scatter regions of dissociated testicular cells from leukemic mice were analyzed by staining for MHC class I heavy chain (H-2Kb/H-2Db) and for CD45. Cells that did not stain positively for H-2Kb/H-2Db and CD45 were sorted as the germ cell–enriched fraction. The sorted germ cell–enriched fractions were transplanted into the testes of recipient mice exposed to alkylating agents. Transplanted germ cells colonized, and recipient mice survived. Normal progeny were produced by intracytoplasmic injection of sperm obtained from recipient testes. When unsorted germ cells from leukemic mice were transplanted into recipient testes, all recipient mice developed leukemia. The successful birth of offspring from recipient mice without transmission of leukemia to the recipients indicates the potential of autotransplantation of germ cells sorted by FACS to treat infertility secondary to anticancer treatment for childhood leukemia.

Authors

Kazutoshi Fujita, Hiroshi Ohta, Akira Tsujimura, Tetsuya Takao, Yasushi Miyagawa, Shingo Takada, Kiyomi Matsumiya, Teruhiko Wakayama, Akihiko Okuyama

×

Figure 3

Options: View larger image (or click on image) Download as PowerPoint
Isolation of the germ cell–enriched fraction and the leukemic fraction f...
Isolation of the germ cell–enriched fraction and the leukemic fraction from leukemic mice. (A and B) Flow cytometric analysis of the G1 fraction of germ cells from C1498-inoculated mice. The H-2Kb/H-2Db– and CD45– fraction composes the germ cell–enriched fraction (G2), and the H-2Kb/H-2Db+ and CD45+ fraction composes the leukemic cell fraction (G3). Each fraction (G2 and G3) was isolated by FACS. (C) Survival after intraperitoneal injection of cell fractions sorted by FACS. All mice injected with the germ cell–enriched fraction (G2) survived without onset of leukemia for 300 days (n = 12) whereas all mice injected with the leukemic cell fraction (G3) developed terminal signs of leukemia within 40 days (n = 12).

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts