Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Blood-brain barrier invasion by group B Streptococcus depends upon proper cell-surface anchoring of lipoteichoic acid
Kelly S. Doran, … , Andreas Peschel, Victor Nizet
Kelly S. Doran, … , Andreas Peschel, Victor Nizet
Published September 1, 2005
Citation Information: J Clin Invest. 2005;115(9):2499-2507. https://doi.org/10.1172/JCI23829.
View: Text | PDF
Research Article Infectious disease

Blood-brain barrier invasion by group B Streptococcus depends upon proper cell-surface anchoring of lipoteichoic acid

  • Text
  • PDF
Abstract

Group B streptococci (GBSs) are the leading cause of neonatal meningitis. GBSs enter the CNS by penetrating the blood-brain barrier (BBB), which consists of specialized human brain microvascular endothelial cells (hBMECs). To identify GBS factors required for BBB penetration, we generated random mutant libraries of a virulent strain and screened for loss of hBMEC invasion in vitro. Two independent hypo-invasive mutants possessed disruptions in the same gene, invasion associated gene (iagA), which encodes a glycosyltransferase homolog. Allelic replacement of iagA in the GBS chromosome produced a 4-fold decrease in hBMEC invasiveness. Mice challenged with the GBS ΔiagA mutant developed bacteremia comparably to WT mice, yet mortality was significantly lower (20% vs. 90%), as was the incidence of meningitis. The glycolipid diglucosyldiacylglycerol, a cell membrane anchor for lipoteichoic acid (LTA) and predicted product of the IagA glycosyltransferase, was absent in the ΔiagA mutant, which consequently shed LTA into the media. Attenuation of virulence of the ΔiagA mutant was found to be independent of TLR2-mediated signaling, but bacterial supernatants from the ΔiagA mutant containing released LTA inhibited hBMEC invasion by WT GBS. Our data suggest that LTA expression on the GBS surface plays a role in bacterial interaction with BBB endothelium and the pathogenesis of neonatal meningitis.

Authors

Kelly S. Doran, Erin J. Engelson, Arya Khosravi, Heather C. Maisey, Iris Fedtke, Ozlem Equils, Kathrin S. Michelsen, Moshe Arditi, Andreas Peschel, Victor Nizet

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 1,106 270
PDF 73 43
Figure 252 1
Citation downloads 76 0
Totals 1,507 314
Total Views 1,821
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts