Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer
Gennadi V. Glinsky, … , Olga Berezovska, Anna B. Glinskii
Gennadi V. Glinsky, … , Olga Berezovska, Anna B. Glinskii
Published June 1, 2005
Citation Information: J Clin Invest. 2005;115(6):1503-1521. https://doi.org/10.1172/JCI23412.
View: Text | PDF
Categories: Research Article Oncology

Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer

  • Text
  • PDF
Abstract

Activation in transformed cells of normal stem cells’ self-renewal pathways might contribute to the survival life cycle of cancer stem cells and promote tumor progression. The BMI-1 oncogene–driven gene expression pathway is essential for the self-renewal of hematopoietic and neural stem cells. We applied a mouse/human comparative translational genomics approach to identify an 11-gene signature that consistently displays a stem cell–resembling expression profile in distant metastatic lesions as revealed by the analysis of metastases and primary tumors from a transgenic mouse model of prostate cancer and cancer patients. To further validate these results, we examined the prognostic power of the 11-gene signature in several independent therapy-outcome sets of clinical samples obtained from 1,153 cancer patients diagnosed with 11 different types of cancer, including 5 epithelial malignancies (prostate, breast, lung, ovarian, and bladder cancers) and 5 nonepithelial malignancies (lymphoma, mesothelioma, medulloblastoma, glioma, and acute myeloid leukemia). Kaplan-Meier analysis demonstrated that a stem cell–like expression profile of the 11-gene signature in primary tumors is a consistent powerful predictor of a short interval to disease recurrence, distant metastasis, and death after therapy in cancer patients diagnosed with 11 distinct types of cancer. These data suggest the presence of a conserved BMI-1–driven pathway, which is similarly engaged in both normal stem cells and a highly malignant subset of human cancers diagnosed in a wide range of organs and uniformly exhibiting a marked propensity toward metastatic dissemination as well as a high probability of unfavorable therapy outcome.

Authors

Gennadi V. Glinsky, Olga Berezovska, Anna B. Glinskii

×

Full Text PDF | Download (1.54 MB)

Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts