Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Antiviral chemotherapy facilitates control of poxvirus infections through inhibition of cellular signal transduction
Hailin Yang, … , Raymond M. Welsh, Ellis L. Reinherz
Hailin Yang, … , Raymond M. Welsh, Ellis L. Reinherz
Published February 1, 2005
Citation Information: J Clin Invest. 2005;115(2):379-387. https://doi.org/10.1172/JCI23220.
View: Text | PDF
Article Infectious disease

Antiviral chemotherapy facilitates control of poxvirus infections through inhibition of cellular signal transduction

  • Text
  • PDF
Abstract

The EGF-like domain of smallpox growth factor (SPGF) targets human ErbB-1, inducing tyrosine phosphorylation of certain host cellular substrates via activation of the receptor’s kinase domain and thereby facilitating viral replication. Given these findings, low molecular weight organic inhibitors of ErbB-1 kinases might function as antiviral agents against smallpox. Here we show that CI-1033 and related 4-anilinoquinazolines inhibit SPGF-induced human cellular DNA synthesis, protein tyrosine kinase activation, and c-Cbl association with ErbB-1 and resultant internalization. Infection of monkey kidney BSC-40 and VERO-E6 cells in vitro by variola strain Solaimen is blocked by CI-1033, primarily at the level of secondary viral spreading. In an in vivo lethal vaccinia virus pneumonia model, CI-1033 alone promotes survival of animals, augments systemic T cell immunity and, in conjunction with a single dose of anti-L1R intracellular mature virus particle-specific mAb, fosters virtually complete viral clearance of the lungs of infected mice by the eighth day after infection. Collectively, these findings show that chemical inhibitors of host-signaling pathways exploited by viral pathogens may represent potent antiviral therapies.

Authors

Hailin Yang, Sung-Kwon Kim, Mikyung Kim, Pedro A. Reche, Tiara J. Morehead, Inger K. Damon, Raymond M. Welsh, Ellis L. Reinherz

×

Usage data is cumulative from August 2024 through August 2025.

Usage JCI PMC
Text version 823 45
PDF 76 19
Figure 301 7
Supplemental data 53 0
Citation downloads 95 0
Totals 1,348 71
Total Views 1,419
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts