Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Inhibition of apoptosis improves outcome in a model of congenital muscular dystrophy
Mahasweta Girgenrath, … , Christine A. Kostek, Jeffrey Boone Miller
Mahasweta Girgenrath, … , Christine A. Kostek, Jeffrey Boone Miller
Published December 1, 2004
Citation Information: J Clin Invest. 2004;114(11):1635-1639. https://doi.org/10.1172/JCI22928.
View: Text | PDF
Article Neuroscience

Inhibition of apoptosis improves outcome in a model of congenital muscular dystrophy

  • Text
  • PDF
Abstract

The most common form of human congenital muscular dystrophy (CMD) is caused by mutations in the laminin-α2 gene. Loss of laminin-α2 function in this autosomal recessive type 1A form of CMD results in neuromuscular dysfunction and, often, early death. Laminin-α2–deficient skeletal muscles in both humans and mice show signs of muscle cell death by apoptosis. To examine the significance of apoptosis in CMD1A pathogenesis, we determined whether pathogenesis in laminin-α2–deficient (Lama2–/–) mice could be ameliorated by inhibiting apoptosis through either (a) inactivation of the proapoptosis protein Bax or (b) overexpression of the antiapoptosis protein Bcl-2 from a muscle-specific transgene. We found that both of these genetic interventions produced a several-fold increase in the lifespan of Lama2–/– mice. Bax inactivation also improved postnatal growth rate and myofiber histology and decreased fixed contractures of Lama2–/– mice. Thus, Bcl-2 family–mediated apoptosis contributes significantly to pathogenesis in the mouse model of CMD1A, and antiapoptosis therapy may be a possible route to amelioration of neuromuscular dysfunction due to laminin-α2 deficiency in humans.

Authors

Mahasweta Girgenrath, Janice A. Dominov, Christine A. Kostek, Jeffrey Boone Miller

×

Full Text PDF | Download (518.53 KB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts