Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
SOCS2 negatively regulates growth hormone action in vitro and in vivo
Christopher J. Greenhalgh, Elizabeth Rico-Bautista, Mattias Lorentzon, Anne L. Thaus, Phillip O. Morgan, Tracy A. Willson, Panagiota Zervoudakis, Donald Metcalf, Ian Street, Nicos A. Nicola, Andrew D. Nash, Louis J. Fabri, Gunnar Norstedt, Claes Ohlsson, Amilcar Flores-Morales, Warren S. Alexander, Douglas J. Hilton
Christopher J. Greenhalgh, Elizabeth Rico-Bautista, Mattias Lorentzon, Anne L. Thaus, Phillip O. Morgan, Tracy A. Willson, Panagiota Zervoudakis, Donald Metcalf, Ian Street, Nicos A. Nicola, Andrew D. Nash, Louis J. Fabri, Gunnar Norstedt, Claes Ohlsson, Amilcar Flores-Morales, Warren S. Alexander, Douglas J. Hilton
View: Text | PDF
Article Endocrinology

SOCS2 negatively regulates growth hormone action in vitro and in vivo

  • Text
  • PDF
Abstract

Mice deficient in SOCS2 display an excessive growth phenotype characterized by a 30–50% increase in mature body size. Here we show that the SOCS2–/– phenotype is dependent upon the presence of endogenous growth hormone (GH) and that treatment with exogenous GH induced excessive growth in mice lacking both endogenous GH and SOCS2. This was reflected in terms of overall body weight, body and bone lengths, and the weight of internal organs and tissues. A heightened response to GH was also measured by examining GH-responsive genes expressed in the liver after exogenous GH administration. To further understand the link between SOCS2 and the GH-signaling cascade, we investigated the nature of these interactions using structure/function and biochemical interaction studies. Analysis of the 3 structural motifs of the SOCS2 molecule revealed that each plays a crucial role in SOCS2 function, with the conserved SOCS-box motif being essential for all inhibitory function. SOCS2 was found to bind 2 phosphorylated tyrosines on the GH receptor, and mutational analysis of these amino acids showed that both were essential for SOCS2 function. Together, the data provide clear evidence that SOCS2 is a negative regulator of GH signaling.

Authors

Christopher J. Greenhalgh, Elizabeth Rico-Bautista, Mattias Lorentzon, Anne L. Thaus, Phillip O. Morgan, Tracy A. Willson, Panagiota Zervoudakis, Donald Metcalf, Ian Street, Nicos A. Nicola, Andrew D. Nash, Louis J. Fabri, Gunnar Norstedt, Claes Ohlsson, Amilcar Flores-Morales, Warren S. Alexander, Douglas J. Hilton

×

Figure 5

Options: View larger image (or click on image) Download as PowerPoint
SOCS2 motif control of GH signaling. (A) A schematic diagram of SOCS2 is...
SOCS2 motif control of GH signaling. (A) A schematic diagram of SOCS2 is provided to help clarify mutant constructs used and residues mutated in the SH2 domain. (B–D) 293T cells were transfected with pig GH receptor and SOCS2 (SOCS2 WT), or with the following SOCS2 mutant constructs: (B) SOCS2 with a point mutation in the SH2 domain R73K (SOCS2 D) or SOCS2 with a triple mutation at R73K, D74E, and S75C in the SH2 domain (SOCS2 KD); (C) SOCS2 lacking the 37-AA N terminus (SOCS2°NT) or SOCS2 with the N-terminal region of SOCS1 (SOCS1/2/2); or (D) SOCS2 lacking the 39-AA C terminus (SOCS2°SB) at a range of plasmid concentrations (ng). The transfected cells were then stimulated with rpGH and the luciferase activity from an LHRE-luciferase reporter was measured. Data is corrected for transfection efficiency by cotransfection of a β-galactosidase–expressing plasmid. Luciferase activity was corrected using values obtained in the absence of GH, then expressed as a percentage of wild-type activity, which was assigned a value of 100%. Experiments were performed in triplicate, and data presented here are representative of 3 independent experiments. (E) Flag-tagged SOCS2 and empty vector were transfected into 293T cells, lysed, and immunoprecipitated using antibodies against Flag. After separation on SDS-PAGE and Western transfer, blots were probed with antibodies against Elongins B and C, then stripped and reprobed with antibodies against the Flag epitope.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts