Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Severe combined immunodeficiency caused by deficiency in either the δ or the ε subunit of CD3
Geneviève de Saint Basile, … , Alain Fischer, Françoise Le Deist
Geneviève de Saint Basile, … , Alain Fischer, Françoise Le Deist
Published November 15, 2004
Citation Information: J Clin Invest. 2004;114(10):1512-1517. https://doi.org/10.1172/JCI22588.
View: Text | PDF
Article Immunology

Severe combined immunodeficiency caused by deficiency in either the δ or the ε subunit of CD3

  • Text
  • PDF
Abstract

We investigated the molecular mechanism underlying a severe combined immunodeficiency characterized by the selective and complete absence of T cells. The condition was found in 5 patients and 2 fetuses from 3 consanguineous families. Linkage analysis performed on the 3 families revealed that the patients were carrying homozygous haplotypes within the 11q23 region, in which the genes encoding the γ, δ, and ε subunits of CD3 are located. Patients and affected fetuses from 2 families were homozygous for a mutation in the CD3D gene, and patients from the third family were homozygous for a mutation in the CD3E gene. The thymus from a CD3δ-deficient fetus was analyzed and revealed that T cell differentiation was blocked at entry into the double positive (CD4+CD8+) stage with the accumulation of intermediate CD4–single positive cells. This indicates that CD3δ plays an essential role in promoting progression of early thymocytes toward double-positive stage. Altogether, these findings extend the known molecular mechanisms underlying severe combined immunodeficiency to a new deficiency, i.e., CD3ε deficiency, and emphasize the essential roles played by the CD3ε and CD3δ subunits in human thymocyte development, since these subunits associate with both the pre-TCR and the TCR.

Authors

Geneviève de Saint Basile, Frédéric Geissmann, Elisabeth Flori, Béatrice Uring-Lambert, Claire Soudais, Marina Cavazzana-Calvo, Anne Durandy, Nada Jabado, Alain Fischer, Françoise Le Deist

×

Full Text PDF | Download (561.59 KB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts