Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Severe combined immunodeficiency caused by deficiency in either the δ or the ε subunit of CD3
Geneviève de Saint Basile, … , Alain Fischer, Françoise Le Deist
Geneviève de Saint Basile, … , Alain Fischer, Françoise Le Deist
Published November 15, 2004
Citation Information: J Clin Invest. 2004;114(10):1512-1517. https://doi.org/10.1172/JCI22588.
View: Text | PDF
Article Immunology

Severe combined immunodeficiency caused by deficiency in either the δ or the ε subunit of CD3

  • Text
  • PDF
Abstract

We investigated the molecular mechanism underlying a severe combined immunodeficiency characterized by the selective and complete absence of T cells. The condition was found in 5 patients and 2 fetuses from 3 consanguineous families. Linkage analysis performed on the 3 families revealed that the patients were carrying homozygous haplotypes within the 11q23 region, in which the genes encoding the γ, δ, and ε subunits of CD3 are located. Patients and affected fetuses from 2 families were homozygous for a mutation in the CD3D gene, and patients from the third family were homozygous for a mutation in the CD3E gene. The thymus from a CD3δ-deficient fetus was analyzed and revealed that T cell differentiation was blocked at entry into the double positive (CD4+CD8+) stage with the accumulation of intermediate CD4–single positive cells. This indicates that CD3δ plays an essential role in promoting progression of early thymocytes toward double-positive stage. Altogether, these findings extend the known molecular mechanisms underlying severe combined immunodeficiency to a new deficiency, i.e., CD3ε deficiency, and emphasize the essential roles played by the CD3ε and CD3δ subunits in human thymocyte development, since these subunits associate with both the pre-TCR and the TCR.

Authors

Geneviève de Saint Basile, Frédéric Geissmann, Elisabeth Flori, Béatrice Uring-Lambert, Claire Soudais, Marina Cavazzana-Calvo, Anne Durandy, Nada Jabado, Alain Fischer, Françoise Le Deist

×

Figure 2

Options: View larger image (or click on image) Download as PowerPoint
Schematic representation of the CD3D and CD3E gene mutations. The extrac...
Schematic representation of the CD3D and CD3E gene mutations. The extracellular (EC), transmembrane (TM), and intracellular (IC) regions, the leader peptide (LP), and the glycosylation sites (G) are shown. X, stop codon; fs, frameshift.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts