Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Identification of cellular deoxyhypusine synthase as a novel target for antiretroviral therapy
Ilona Hauber, … , Thomas Harrer, Joachim Hauber
Ilona Hauber, … , Thomas Harrer, Joachim Hauber
Published January 3, 2005
Citation Information: J Clin Invest. 2005;115(1):76-85. https://doi.org/10.1172/JCI21949.
View: Text | PDF
Article AIDS/HIV

Identification of cellular deoxyhypusine synthase as a novel target for antiretroviral therapy

  • Text
  • PDF
Abstract

The introduction of highly active antiretroviral therapy (HAART) has significantly decreased morbidity and mortality among patients infected with HIV-1. However, HIV-1 can acquire resistance against all currently available antiretroviral drugs targeting viral reverse transcriptase, protease, and gp41. Moreover, in a growing number of patients, the development of multidrug-resistant viruses compromises HAART efficacy and limits therapeutic options. Therefore, it is an ongoing task to develop new drugs and to identify new targets for antiretroviral therapy. Here, we identified the guanylhydrazone CNI-1493 as an efficient inhibitor of human deoxyhypusine synthase (DHS). By inhibiting DHS, this compound suppresses hypusine formation and, thereby, activation of eukaryotic initiation factor 5A (eIF-5A), a cellular cofactor of the HIV-1 Rev regulatory protein. We demonstrate that inhibition of DHS by CNI-1493 or RNA interference efficiently suppressed the retroviral replication cycle in cell culture and primary cells. We show that CNI-1493 inhibits replication of macrophage- and T cell–tropic laboratory strains, clinical isolates, and viral strains with high-level resistance to inhibitors of viral protease and reverse transcriptase. Moreover, no measurable drug-induced adverse effects on cell cycle transition, apoptosis, and general cytotoxicity were observed. Therefore, human DHS represents a novel and promising drug target for the development of advanced antiretroviral therapies, particularly for the inhibition of multidrug-resistant viruses.

Authors

Ilona Hauber, Dorian Bevec, Jochen Heukeshoven, Friedrich Krätzer, Florian Horn, Axel Choidas, Thomas Harrer, Joachim Hauber

×

Figure 7

Options: View larger image (or click on image) Download as PowerPoint
Inhibition of HAART-resistant HIV-1 isolates. PM1 cells were incubated f...
Inhibition of HAART-resistant HIV-1 isolates. PM1 cells were incubated for 6 days in the presence of 1.0 μM CNI-1493 or DMSO and then infected with various types of antiretroviral drug–resistant viruses. Results of the phenotypic drug sensitivity assay (red areas in the virograms; for details see text) are shown. The resistance-conferring mutations in the various viral genomes (genotypes), as determined by DNA sequencing, are summarized in the supplemental data section. (A) Infected cells were incubated in CNI-1493 at concentrations of 1.0 μM and 0.5 μM, or DMSO (control). Inhibition of virus replication (in percent) and drug toxicity (as measured by MTT assay) at days 6 and 12 are indicated in the right panels. (B) Three-week time course of inhibition of an “omni-resistant” virus isolate (FE9) by CNI-1493. p24 antigen level (p24Ag/CNI-1493 and p24Ag/DMSO control) and cell viability (MTT/CNI-1493 and MTT/DMSO control) were determined at days 6, 9, 12, 16, and 20 after infection (graphs). PI, protease inhibitor; NRTI, nucleoside reverse transcriptase inhibitor; NNRTI, non-nucleoside reverse transcriptase inhibitor; AZT, zidovudine; DDC, zalcitabine; ddI, didanosine; D4T, stavudine; 3TC, lamivudine.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts