Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Atypical PKC-ζ regulates SDF-1–mediated migration and development of human CD34+ progenitor cells
Isabelle Petit, … , Ronen Alon, Tsvee Lapidot
Isabelle Petit, … , Ronen Alon, Tsvee Lapidot
Published January 3, 2005
Citation Information: J Clin Invest. 2005;115(1):168-176. https://doi.org/10.1172/JCI21773.
View: Text | PDF
Article Stem cells

Atypical PKC-ζ regulates SDF-1–mediated migration and development of human CD34+ progenitor cells

  • Text
  • PDF
Abstract

The chemokine stromal cell–derived factor–1 (SDF-1) and its receptor, CXCR4, play a major role in migration, retention, and development of hematopoietic progenitors in the bone marrow. We report the direct involvement of atypical PKC-ζ in SDF-1 signaling in immature human CD34+-enriched cells and in leukemic pre-B acute lymphocytic leukemia (ALL) G2 cells. Chemotaxis, cell polarization, and adhesion of CD34+ cells to bone marrow stromal cells were found to be PKC-ζ dependent. Overexpression of PKC-ζ in G2 and U937 cells led to increased directional motility to SDF-1. Interestingly, impaired SDF-1–induced migration of the pre-B ALL cell line B1 correlated with reduced PKC-ζ expression. SDF-1 triggered PKC-ζ phosphorylation, translocation to the plasma membrane, and kinase activity. Furthermore we identified PI3K as an activator of PKC-ζ, and Pyk-2 and ERK1/2 as downstream targets of PKC-ζ. SDF-1–induced proliferation and MMP-9 secretion also required PKC-ζ activation. Finally, we showed that in vivo engraftment, but not homing, of human CD34+-enriched cells to the bone marrow of NOD/SCID mice was PKC-ζ dependent and that injection of mice with inhibitory PKC-ζ pseudosubstrate peptides resulted in mobilization of murine progenitors. Our results demonstrate a central role for PKC-ζ in SDF-1–dependent regulation of hematopoietic stem and progenitor cell motility and development.

Authors

Isabelle Petit, Polina Goichberg, Asaf Spiegel, Amnon Peled, Chaya Brodie, Rony Seger, Arnon Nagler, Ronen Alon, Tsvee Lapidot

×

Full Text PDF | Download (942.88 KB)

Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts