Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Dynamic changes in Mcl-1 expression regulate macrophage viability or commitment to apoptosis during bacterial clearance
Helen M. Marriott, Colin D. Bingle, Robert C. Read, Karen E. Braley, Guido Kroemer, Paul G. Hellewell, Ruth W. Craig, Moira K.B. Whyte, David H. Dockrell
Helen M. Marriott, Colin D. Bingle, Robert C. Read, Karen E. Braley, Guido Kroemer, Paul G. Hellewell, Ruth W. Craig, Moira K.B. Whyte, David H. Dockrell
View: Text | PDF
Article Infectious disease

Dynamic changes in Mcl-1 expression regulate macrophage viability or commitment to apoptosis during bacterial clearance

  • Text
  • PDF
Abstract

Macrophages are critical effectors of bacterial clearance and must retain viability, despite exposure to toxic bacterial products, until key antimicrobial functions are performed. Subsequently, host-mediated macrophage apoptosis aids resolution of infection. The ability of macrophages to make this transition from resistance to susceptibility to apoptosis is important for effective host innate immune responses. We investigated the role of Mcl-1, an essential regulator of macrophage lifespan, in this switch from viability to apoptosis, using the model of pneumococcal-associated macrophage apoptosis. Upon exposure to pneumococci, macrophages initially upregulate Mcl-1 protein and maintain viability for up to 14 hours. Subsequently, macrophages reduce expression of full-length Mcl-1 and upregulate a 34-kDa isoform of Mcl-1 corresponding to a novel BH3-only splice variant, Mcl-1Exon-1. Change in expression of Mcl-1 protein is associated with mitochondrial membrane permeabilization, which is characterized by loss of mitochondrial inner transmembrane potential and translocation of cytochrome c and apoptosis-inducing factor. Following pneumococcal infection, macrophages expressing full-length human Mcl-1 as a transgene exhibit a delay in apoptosis and in bacterial killing. Mcl-1 transgenic mice clear pneumococci from the lung less efficiently than nontransgenic mice. Dynamic changes in Mcl-1 expression determine macrophage viability as well as antibacterial host defense.

Authors

Helen M. Marriott, Colin D. Bingle, Robert C. Read, Karen E. Braley, Guido Kroemer, Paul G. Hellewell, Ruth W. Craig, Moira K.B. Whyte, David H. Dockrell

×

Figure 7

Options: View larger image (or click on image) Download as PowerPoint
Mcl-1 transgenic mice demonstrate decreased AM apoptosis and decreased b...
Mcl-1 transgenic mice demonstrate decreased AM apoptosis and decreased bacterial clearance from the lung. (A) Intracellular killing assays were performed in BMDMs from Mcl-1 transgenic and nontransgenic controls 14 hours after infection. Results are representative of 4 separate experiments. P < 0.05, transgenic vs. nontransgenic; Wilcoxon signed rank test. Transgenic and nontransgenic mice received an intratracheal instillation of the indicated dose of pneumococci. (B and C) Percentage apoptotic macrophages in bronchial alveolar fluid from transgenic vs. nontransgenic mice after instillation of 104 CFU pneumococci as assessed by (B) Annexin V/ToPro 3 staining and flow cytometry (P < 0.01; n = 6–8) and (C) nuclear morphology on cytospins (P < 0.01; n = 6–8). (D) Bacterial CFU in lungs of transgenic vs. nontransgenic mice (104 CFU, P < 0.05, n = 6–8; 105 CFU, P > 0.05, n = 3–4).

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts