Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Estrogen upregulates cyclooxygenase-1 gene expression in ovine fetal pulmonary artery endothelium.
S S Jun, … , M C Pace, P W Shaul
S S Jun, … , M C Pace, P W Shaul
Published July 1, 1998
Citation Information: J Clin Invest. 1998;102(1):176-183. https://doi.org/10.1172/JCI2034.
View: Text | PDF
Research Article

Estrogen upregulates cyclooxygenase-1 gene expression in ovine fetal pulmonary artery endothelium.

  • Text
  • PDF
Abstract

Prostacyclin (PGI2) is a key mediator of pulmonary vasodilation in the perinatal period and its synthesis in the pulmonary vasculature increases markedly during late gestation due to enhanced expression of the rate-limiting enzyme cyclooxygenase-1 (COX-1). The hormone estrogen may play a role in COX-1 upregulation since fetal estrogen levels rise dramatically during late gestation and estrogen enhances PGI2 synthesis in nonpulmonary vascular cells. We therefore studied the direct effects of estrogen on COX-1 expression in ovine fetal pulmonary artery endothelial cells (PAEC). Exposure to estradiol-17beta (E2beta, 10(-)10 to 10(-)6 M) caused a dose-related increase in COX-1 mRNA expression that was evident after 48 h and maximal at 10(-)8 M (fourfold increase). COX-1 mRNA stability was unchanged, suggesting that the upregulation is mediated at the level of transcription. E2beta treatment (10(-)8 M for 48 h) also caused a threefold increase in COX-1 protein expression and a threefold increase in PGI2 synthesis stimulated by bradykinin, the calcium ionophore A23187, or arachidonic acid. The estrogen receptor (ER) antagonist ICI 182,780 fully reversed the effects of the hormone on COX-1 protein expression and on arachidonic acid-stimulated PGI2 synthesis, and ER expression was evident in the PAEC by immunoblot analysis. These findings indicate that physiologic levels of estrogen cause upregulation of COX-1 expression and PGI2 synthesis in fetal PAEC via activation of PAEC ER. This process may play a critical role in optimizing the capacity for PGI2-mediated pulmonary vasodilation at birth, and it may also be involved in estrogen responsiveness in other vascular beds.

Authors

S S Jun, Z Chen, M C Pace, P W Shaul

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts