Advances in cancer therapy have greatly extended patient survival but have also introduced a growing burden of cardiovascular toxicity that threatens long-term outcomes. These toxicities encompass a broad and often unpredictable range of clinical presentations, complicating oncologic care. Understanding how chemotherapy, targeted agents, and immune modulators impair cardiovascular function is essential for early detection, prevention, and management. Emerging insights into the cellular and molecular mechanisms, ranging from immune activation to transcriptional reprogramming and disrupted intercellular communication, underscore the complexity of cancer therapy–induced cardiac injury. Unraveling these mechanisms will be key to developing personalized, mechanism-based strategies that preserve cardiac function without compromising anticancer efficacy. As survivorship continues to improve, mitigating cardiotoxicity remains a critical priority for preserving both the quality and duration of life of patients.
Giulia Guerra, Marco Mergiotti, Hossein Ardehali, Emilio Hirsch, Alessandra Ghigo