Through a combination of single-cell/single-nucleus RNA-sequencing (sc/snRNA-seq) data analysis, immunohistochemistry, and primary macrophage studies, we have identified pathogenic macrophages characterized by TET3 overexpression (Toe-Macs) in three major human diseases associated with chronic inflammation: metabolic dysfunction-associated steatohepatitis (MASH), non-small cell lung cancer (NSCLC), and endometriosis. These macrophages are induced by common factors present in the disease microenvironment (DME). Crucially, the universal reliance on TET3 overexpression among these macrophages enables their selective elimination as a single population, irrespective of heterogeneity in other molecular markers. In mice, depleting these macrophages via myeloid-specific Tet3 knockout markedly mitigates disease progression and the therapeutic effects are recapitulated pharmacologically using a TET3-specific small molecule degrader. Through an unexpected mode of action, TET3 epigenetically regulates expression of multiple genes key to the generation and maintenance of an inflammatory/immunosuppressive DME. We propose that Toe-Macs are a unifying feature of pathogenic macrophages that could be therapeutically targeted to treat MASH, NSCLC, endometriosis, and potentially other chronic inflammatory diseases.
Beibei Liu, Yangyang Dai, Zixin Wang, Jiahui Song, Yushu Du, Haining Lv, Stefania Bellone, Yang-Hartwich Yang, Andrew Kennedy, Songying Zhang, Muthukumaran Venkatachalapathy, Yulia V. Surovtseva, Penghua Wang, Gordon G. Carmichael, Hugh S. Taylor, Xuchen Zhang, Da Li, Yingqun Huang
Usage data is cumulative from August 2025 through October 2025.
| Usage | JCI | PMC | 
|---|---|---|
| Text version | 1,348 | 0 | 
| 650 | 0 | |
| Figure | 1 | 0 | 
| Supplemental data | 154 | 0 | 
| Citation downloads | 40 | 0 | 
| Totals | 2,193 | 0 | 
| Total Views | 2,193 | |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.
 
 
