Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
GLP-1 physiology and pharmacology along the gut-brain axis
Lisa R. Beutler
Lisa R. Beutler
View: Text | PDF
Review Series

GLP-1 physiology and pharmacology along the gut-brain axis

  • Text
  • PDF
Abstract

Historically, antiobesity medications have been modestly effective at best, with side-effect profiles that limit compliance and often preclude the long-term therapy required to maintain weight loss. Recently developed therapies based on analogs of the gut hormone glucagon-like peptide-1 (GLP-1) have transformed the medical management of obesity, leading both to a degree of weight loss that rivals bariatric surgery and a reduction in morbidity and mortality associated with obesity-related complications. GLP-1 receptor agonist (GLP-1RA) therapies were developed to mimic the peripheral effects of GLP-1, but it is now well established that their efficacy in the treatment of obesity depends on reducing energy intake through their action in the central nervous system (CNS). Recent data indicate that the aversive gastrointestinal side effects of GLP-1RAs are also CNS mediated. Although a complete understanding of the neural circuits underlying GLP-1RA–induced weight loss remains elusive, a great deal has been learned in recent years. This Review summarizes proposed gut-brain and central mechanisms through which GLP-1 and its synthetic analogs regulate food intake and bodyweight.

Authors

Lisa R. Beutler

×

Figure 1

Overview of the physiologic sources, targets, and proposed function of GLP-1 discussed in this Review.

Options: View larger image (or click on image) Download as PowerPoint
Overview of the physiologic sources, targets, and proposed function of G...
GLP-1 is secreted from neurons in the solitary tract nucleus of the brainstem, from enteroendocrine L cells, and from pancreatic α cells. Each source acts on different target tissues, with a range of physiological effects. BW, bodyweight; FI, food intake; EE, energy expenditure; remaining abbreviations are as described in the text.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts