Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact

Usage Information

Blockade of T cell costimulation reveals interrelated actions of CD4+ and CD8+ T cells in control of SIV replication
David A. Garber, … , Silvija I. Staprans, Mark B. Feinberg
David A. Garber, … , Silvija I. Staprans, Mark B. Feinberg
Published March 15, 2004
Citation Information: J Clin Invest. 2004;113(6):836-845. https://doi.org/10.1172/JCI19442.
View: Text | PDF
Article AIDS/HIV

Blockade of T cell costimulation reveals interrelated actions of CD4+ and CD8+ T cells in control of SIV replication

  • Text
  • PDF
Abstract

In vivo blockade of CD28 and CD40 T cell costimulation pathways during acute simian immunodeficiency virus (SIV) infection of rhesus macaques was performed to assess the relative contributions of CD4+ T cells, CD8+ T cells, and Ab responses in modulating SIV replication and disease progression. Transient administration of CTLA4-Ig and anti–CD40L mAb to SIV-infected rhesus macaques resulted in dramatic inhibition of the generation of both SIV-specific cellular and humoral immune responses. Acute levels of proliferating CD8+ T cells were associated with early control of SIV viremia but did not predict ensuing set point viremia or survival. The level of in vivo CD4+ T cell proliferation during acute SIV infection correlated with concomitant peak levels of SIV plasma viremia, whereas measures of in vivo CD4+ T cell proliferation that extended into chronic infection correlated with lower SIV viral load and increased survival. These results suggest that proliferating CD4+ T cells function both as sources of virus production and as antiviral effectors and that increased levels of CD4+ T cell proliferation during SIV infections reflect antigen-driven antiviral responses rather than a compensatory homeostatic response. These results highlight the interrelated actions of CD4+ and CD8+ T cell responses in vivo that modulate SIV replication and pathogenesis.

Authors

David A. Garber, Guido Silvestri, Ashley P. Barry, Andrew Fedanov, Natalia Kozyr, Harold McClure, David C. Montefiori, Christian P. Larsen, John D. Altman, Silvija I. Staprans, Mark B. Feinberg

×

Usage data is cumulative from January 2020 through January 2021.

Usage JCI PMC
Text version 306 29
PDF 31 28
Figure 74 0
Supplemental data 7 0
Citation downloads 7 0
Totals 425 57
Total Views 482
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts