Hypoxia in the tumor microenvironment promotes lymphatic metastasis, yet the role of cancer-associated fibroblasts (CAFs) in this process remains insufficiently elucidated in colorectal cancer (CRC). In this study, we developed a large language model–based cellular hypoxia–predicting classifier to identify hypoxic CAFs (HCAFs) at single-cell resolution. Our findings revealed that HCAFs enhance CRC lymphatic metastasis by secreting CLEC11A, a protein that binds to the LGR5 receptor on tumor cells, subsequently activating the WNT/β-catenin signaling pathway. This promotes epithelial-mesenchymal transition and lymphangiogenesis, facilitating the spread of tumor cells via the lymphatic system. Furthermore, we demonstrate that the hypoxia-induced transcription factor HIF1A regulates the conversion of normoxic CAFs to HCAFs, driving CLEC11A expression and promoting metastasis. In vivo and vitro experiments confirmed the pro-metastatic role of CLEC11A in CRC, with its inhibition reducing lymphatic metastasis. This effect was markedly reversed by targeting the LGR5 receptor on tumor cells or inhibiting the WNT/β-catenin pathway, further elucidating the underlying mechanisms of CLEC11A-driven metastasis. These findings underscore the potential of targeting the CLEC11A-LGR5 axis to prevent lymphatic dissemination in CRC. Our study highlights the role of HCAFs in CRC progression and reveals mechanisms of lymphatic metastasis for intervention.
Chuhan Zhang, Teng Pan, Yuyuan Zhang, Yushuai Wu, Anning Zuo, Shutong Liu, Yuhao Ba, Benyu Liu, Shuaixi Yang, Yukang Chen, Hui Xu, Peng Luo, Quan Cheng, Siyuan Weng, Long Liu, Xing Zhou, Jingyuan Ning, Xinwei Han, Jinhai Deng, Zaoqu Liu