Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Maturational differences in lung NF-κB activation and their role in tolerance to hyperoxia
Guang Yang, … , Yi-Hao Weng, Phyllis A. Dennery
Guang Yang, … , Yi-Hao Weng, Phyllis A. Dennery
Published September 1, 2004
Citation Information: J Clin Invest. 2004;114(5):669-678. https://doi.org/10.1172/JCI19300.
View: Text | PDF
Article Inflammation

Maturational differences in lung NF-κB activation and their role in tolerance to hyperoxia

  • Text
  • PDF
Abstract

Neonatal rodents are more tolerant to hyperoxia than adults. We determined whether maturational differences in lung NF-κB activation could account for the differences. After hyperoxic exposure (O2 > 95%), neonatal (<12 hours old) lung NF-κB binding was increased and reached a maximum between 8 and 16 hours, whereas in adults no changes were observed. Additionally, neonatal NF-κB/luciferase transgenic mice (incorporating 2 NF-κB consensus sequences driving luciferase gene expression) demonstrated enhanced in vivo NF-κB activation after hyperoxia in real time. In the lungs of neonates, there was a propensity toward NF-κB activation as evidenced by increased lung I-κB kinase protein levels, I-κBα phosphorylation, β-transducin repeat–containing protein levels, and total I-κBα degradation. Increased lung p-JNK immunoreactive protein was observed only in the adult lung. Inhibition of pI-κBα by BAY 11-7085 resulted in decreased Bcl-2 protein levels in neonatal lung homogenates and decreased cell viability in lung primary cultures after hyperoxic exposure. Furthermore, neonatal p50-null mutant (p50–/–) mice showed increased lung DNA degradation and decreased survival in hyperoxia compared with WT mice. These data demonstrate that there are maturational differences in lung NF-κB activation and that enhanced NF-κB may serve to protect the neonatal lung from acute hyperoxic injury via inhibition of apoptosis.

Authors

Guang Yang, Aida Abate, Adia G. George, Yi-Hao Weng, Phyllis A. Dennery

×

Full Text PDF | Download (1.03 MB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts