Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
The molecular basis for adhesion-mediated suppression of reactive oxygen species generation by human neutrophils
Tieming Zhao, … , Benjamin P. Bohl, Gary M. Bokoch
Tieming Zhao, … , Benjamin P. Bohl, Gary M. Bokoch
Published December 1, 2003
Citation Information: J Clin Invest. 2003;112(11):1732-1740. https://doi.org/10.1172/JCI19108.
View: Text | PDF
Article Immunology

The molecular basis for adhesion-mediated suppression of reactive oxygen species generation by human neutrophils

  • Text
  • PDF
Abstract

Human neutrophil adherence to ECMs induces an initial inhibition of stimulated reactive oxygen species (ROS) formation, followed by an enhanced phase of oxidant production. The initial integrin-mediated suppression of ROS constitutes a mechanism to prevent inappropriate tissue damage as leukocytes migrate to inflammatory sites. The Rac2 guanosine 5′-triphosphatase (GTPase) is a critical regulatory component of the phagocyte NADPH oxidase. We show that activation of Rac2 is inhibited in adherent neutrophils, correlating with inhibition of ROS formation. Conversely, NADPH oxidase components p47 and p67 assemble normally, suggesting a specific action of adhesion on the Rac2 molecular switch. Reconstitution with activated Rac2 restored rapid NADPH oxidase activation kinetics to adherent neutrophils, establishing that inhibition was due to defective Rac2 activity. We provide evidence that integrins inhibit Rac2 activation via a membrane-associated guanine nucleotide exchange factor, likely to be Vav1. Activation of Vav1, but not its upstream activator, Syk, is suppressed by cell adhesion. Vav1 activity is inhibited due to dephosphorylation of the regulatory Tyr174 via enhanced tyrosine phosphatase activity in adherent cells. These studies identify an integrin-mediated pathway in which Vav1 is as a strong candidate for the critical regulatory point in suppression of Rac2 activation and ROS generation during inflammatory responses.

Authors

Tieming Zhao, Valerie Benard, Benjamin P. Bohl, Gary M. Bokoch

×

Full Text PDF

Download PDF (971.86 KB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts