Functional inactivation of tumor suppressor genes drives cancer initiation, progression, and treatment responses. Most tumor suppressor genes are inactivated through 1 of 2 well-characterized mechanisms: DNA-level mutations, such as point mutations or deletions, and promoter DNA hypermethylation. Here, we report a distinct third mechanism of tumor suppressor inactivation based on alterations to the histone rather than DNA code. We demonstrated that PAX2 is an endometrial tumor suppressor recurrently inactivated by a distinct epigenetic reprogramming event in more than 80% of human endometrial cancers. Integrative transcriptomic, epigenomic, 3D genomic, and machine learning analyses showed that PAX2 transcriptional downregulation is associated with replacement of open/active chromatin features (H3K27ac/H3K4me3) with inaccessible/repressive chromatin features (H3K27me3) in a framework dictated by 3D genome organization. The spread of the repressive H3K27me3 signal resembled a pearl necklace, with its length modulated by cohesin loops, thereby preventing transcriptional dysregulation of neighboring genes. This mechanism, involving the loss of a promoter-proximal superenhancer, was shown to underlie transcriptional silencing of PAX2 in human endometrial cancers. Mouse and human preclinical models established PAX2 as a potent endometrial tumor suppressor. Functionally, PAX2 loss promoted endometrial carcinogenesis by rewiring the transcriptional landscape via global enhancer reprogramming. The discovery that most endometrial cancers originate from a recurring epigenetic alteration carries profound implications for their diagnosis and treatment.
Subhransu S. Sahoo, Susmita G. Ramanand, Ileana C. Cuevas, Yunpeng Gao, Sora Lee, Ahmed Abbas, Xunzhi Zhang, Ashwani Kumar, Prasad Koduru, Sambit Roy, Russell R. Broaddus, Victoria L. Bae-Jump, Andrew B. Gladden, Jayanthi Lea, Elena Lucas, Chao Xing, Akio Kobayashi, Ram S. Mani, Diego H. Castrillon