Esophageal adenocarcinoma is increasingly prevalent and is thought to arise from Barrett’s esophagus (BE), a metaplastic condition in which chronic acid and bile reflux transforms the esophageal squamous epithelium into a gastric-intestinal glandular mucosa. The molecular determinants driving this metaplasia are poorly understood. We developed a human BE organoid biobank that recapitulates BE’s molecular heterogeneity. Bulk and single-cell transcriptomics, supported by patient tissue analysis, revealed that BE differentiation reflects a balance between SOX2 (foregut/esophageal) and CDX2 (hindgut/intestinal) transcription factors. Using squamous-specific inducible Sox2-KO (Krt5CreER/+ Sox2Δ/Δ ROSA26tdTomato/+) mice, we observed increased basal proliferation, reduced squamous differentiation, and expanded metaplastic glands at the squamocolumnar junction, some tracing back to Krt5-expressing cells. CUT&RUN analysis showed SOX2 bound and promoted differentiation-associated targets (e.g., Krt13) and repressed proliferation-associated targets (e.g., Mki67). Thus, SOX2 is critical for foregut squamous epithelial differentiation, and its decreased expression is likely an initiating step in progression to BE and then to esophageal adenocarcinoma.
Ramon U. Jin, Yuanwei Xu, T. Mamie Lih, Yang-Zhe Huang, Toni M. Nittolo, Blake E. Sells, Olivia M. Dres, Jean S. Wang, Qing K. Li, Hui Zhang, Jason C. Mills