The role of endothelial dysfunction in tubulointerstitial fibrosis associated with chronic kidney disease (CKD) is not well understood. In this study, we demonstrate that the activation of the endothelial tyrosine kinase TIE2 alleviates renal pathology in experimental CKD in mice. TIE2 activation was achieved using a human angiopoietin-2 (ANGPT2)-binding and TIE2-activating antibody (ABTAA), or through adult-induced endothelial-specific knockout of the vascular endothelial protein tyrosine phosphatase gene (Veptp). Both methods significantly protected CKD mice from endothelial dysfunction, peritubular capillary loss, tubular epithelial injury, and tubulointerstitial fibrosis. Conversely, silencing TIE2 through adult-induced endothelial-specific knockout of the Tie2 gene exacerbated CKD pathology. Additionally, we found that endothelial dysfunction promotes renal fibrosis not through endothelial-to-mesenchymal transition as previously expected, but by inducing the expression of pro-fibrotic PDGFB in tubular epithelial cells, a process that is inhibited by TIE2 activation. Our findings suggest that TIE2 activation via ABTAA warrants investigation as a therapy in human CKD, where there is a substantial unmet medical need.
Riikka Pietilä, Amanda M. Marks-Hultström, Liqun He, Sami Nanavazadeh, Susan E. Quaggin, Christer Betsholtz, Marie Jeansson
Usage data is cumulative from September 2025 through October 2025.
| Usage | JCI | PMC |
|---|---|---|
| Text version | 916 | 0 |
| 342 | 0 | |
| Supplemental data | 221 | 0 |
| Citation downloads | 28 | 0 |
| Totals | 1,507 | 0 |
| Total Views | 1,507 | |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.