LRRK2 contains a kinase domain where the N2081D Crohn’s disease (CD) risk and the G2019S Parkinson’s disease (PD) pathogenic variants are located. It is not clear how the N2081D variant increases CD risk or how these adjacent mutations give rise to distinct disorders. To investigate the pathophysiology of the CD-linked LRRK2 N2081D variant, we generated a knock-in (KI) mouse model and compared its effects with those of the LRRK2-G2019S mutation. Lrrk2N2081D KI mice demonstrated heightened sensitivity to induced colitis, resulting in more severe intestinal damage than in Lrrk2G2019S KI and WT mice. Analysis of colon tissue revealed distinct mutation-dependent LRRK2 RAB substrate phosphorylation, with significantly elevated phosphorylated RAB10 levels in Lrrk2N2081D mice. In cells, we demonstrated that the N2081D mutation activates LRRK2 through a mechanism distinct from that of LRRK2-G2019S. We also found that proinflammatory stimulation enhances LRRK2 kinase activity, leading to mutation-dependent differences in RAB phosphorylation and inflammatory responses in dendritic cells (DCs). Finally, we show that knockout of Rab12, but not pharmacological LRRK2 kinase inhibition, significantly reduced colitis severity in Lrrk2N2081D mice. Our study characterizes the pathogenic mechanisms of LRRK2-linked CD, highlights structural and functional differences between disease-associated LRRK2 variants, and suggests RAB proteins as promising therapeutic targets for modulating LRRK2 activity in CD treatment.
George R. Heaton, Xingjian Li, Xianting Li, Xiaoting Zhou, Yuanxi Zhang, Duc Tung Vu, Marc Oeller, Ozge Karayel, Quyen Q. Hoang, Meltem Ece Kars, Nitika Kamath, Minghui Wang, Leonid Tarassishin, Matthias Mann, Inga Peter, Zhenyu Yue
Usage data is cumulative from October 2025 through November 2025.
| Usage | JCI | PMC |
|---|---|---|
| Text version | 1,255 | 143 |
| 224 | 49 | |
| Figure | 142 | 0 |
| Supplemental data | 89 | 5 |
| Citation downloads | 15 | 0 |
| Totals | 1,725 | 197 |
| Total Views | 1,922 | |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.