Intestinal function and white adipose tissue (WAT) function deteriorate with age, but whether and how their deterioration is intertwined remains unknown. Increased gut permeability, microbiota dysbiosis, and aberrant immune microenvironment are the hallmarks of intestinal dysfunctions in aging. Here, we show that subcutaneous WAT dysfunction triggered aging-like intestinal dysfunctions in mouse models. Removal of inguinal subcutaneous WAT (iWAT) increased intestinal permeability and inflammation and altered gut microbiota composition as well as susceptibility to pathogen infection in mouse models. These intestinal dysfunctions were accompanied by a reduction of immunoglobulin A–producing (IgA-producing) cells and IgA biosynthesis in the lamina propria of the small intestine. Retinoic acid (RA) is a key cargo within iWAT-derived extracellular vesicles (iWAT-EVs), which, at least in part, elicits IgA class-switching and production in the small intestine and maintains microbiota homeostasis. RA content in iWAT-EVs and intestinal IgA biosynthesis are reduced during aging in mice. Replenishment of “young” iWAT-EVs rejuvenates intestinal IgA production machinery and shifts microbiota composition of aged mice to a “youth” status, which alleviates leaky gut via RA. In conclusion, our findings suggest that iWAT-EVs with RA orchestrate IgA-mediated gut microbiota homeostasis by acting on intestinal B cells, thereby maintaining intestinal health during aging.
KeKao Long, Pujie Liu, Yi Wang, Jordy Evan Sulaiman, Moinul Hoque, Gloria Hoi Yee Li, Daisy Danyue Zhao, Pui-Kei Lee, Gilman Kit-hang Siu, Annie Wing-tung Lee, Zhuohao Liu, Pui-kin So, Yin Cai, Connie Wai-hong Woo, Chi-bun Chan, Aimin Xu, Kenneth King-yip Cheng