Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact

Usage Information

Selectin-mucin interactions as a probable molecular explanation for the association of Trousseau syndrome with mucinous adenocarcinomas
Mark Wahrenbrock, … , Nissi Varki, Ajit Varki
Mark Wahrenbrock, … , Nissi Varki, Ajit Varki
Published September 15, 2003
Citation Information: J Clin Invest. 2003;112(6):853-862. https://doi.org/10.1172/JCI18882.
View: Text | PDF
Article Hematology

Selectin-mucin interactions as a probable molecular explanation for the association of Trousseau syndrome with mucinous adenocarcinomas

  • Text
  • PDF
Abstract

Trousseau described spontaneous, recurrent superficial migratory thrombophlebitis associated with occult cancers, and this was later correlated with disseminated microangiopathy (platelet-rich clots in small blood vessels). Trousseau syndrome often occurs with mucinous adenocarcinomas, which secrete abnormally glycosylated mucins and mucin fragments into the bloodstream. Since carcinoma mucins can have binding sites for selectins, we hypothesized that selectin-mucin interactions might trigger this syndrome. When highly purified, tissue-factor free carcinoma mucin preparations were intravenously injected into mice, platelet-rich microthrombi were rapidly generated. This pathology was markedly diminished in P- or L-selectin–deficient mice. Heparin (an antithrombin-potentiating agent that can also block P- and L-selectin recognition of ligands) ameliorated this platelet aggregation, but had no additional effect in P- or L-selectin–deficient mice. Inhibition of endogenous thrombin by recombinant hirudin also did not block platelet aggregation. Mucins generated platelet aggregation in vitro in hirudinized whole blood, but not in platelet-rich leukocyte-free plasma nor in whole blood from L-selectin–deficient mice. Thus, Trousseau syndrome is likely triggered by interactions of circulating carcinoma mucins with leukocyte L-selectin and platelet P-selectin without requiring accompanying thrombin generation. These data may also explain why heparin ameliorates Trousseau syndrome, while vitamin K antagonists that merely depress thrombin production do not.

Authors

Mark Wahrenbrock, Lubor Borsig, Dzung Le, Nissi Varki, Ajit Varki

×

Usage data is cumulative from March 2020 through March 2021.

Usage JCI PMC
Text version 636 244
PDF 51 258
Figure 49 0
Table 15 0
Supplemental data 0 3
Citation downloads 8 0
Totals 759 505
Total Views 1,264
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts